• Title/Summary/Keyword: 전기구동수직이착륙기

Search Result 3, Processing Time 0.021 seconds

Actuator Fault Detection and Isolation Method for a Hexacopter (헥사콥터의 구동기 고장 검출 및 분리 방법)

  • Park, Min-Kee
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.266-272
    • /
    • 2019
  • Multicopters have become more popular since they are advantageous in their ability to take off and land vertically. In order to guarantee the normal operations of such multicopters, the problem of fault detection and isolation is very important. In this paper, a new method for detecting and isolating an actuator fault of a hexacopter is proposed based on the analytical approach. The residual is newly defined using the angular velocities of actuators estimated by the mathematical model and an actuator fault is detected comparing the residuals to a threshold. And a fault is isolated combining a dynamic model and generated residuals when a fault is detected. The proposed method is a simple, but effective technique because it is based on mathematical model. The results of the computer simulation are also given to demonstrate the validity of the proposed algorithm in case of a single failure.

Disturbance Observer and Time-Delay Controller Design for Individual Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기 기반 개별 블레이드 피치 조종 시스템의 제어를 위한 외란 관측기와 시간 지연제어기 설계)

  • Jaewan Choi;Minyu Kim;Younghoon Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • Recently, the concept of Urban Air Mobility (UAM) has expanded to Advanced Air Mobility (AAM). A tilt rotor type of vertical take-off and landing aircraft has been actively studied and developed. A tilt-rotor aircraft can perform a transition flight between vertical and horizontal flights. A blade pitch angle control system can be used for flight stability during transition flight time. In addition, Individual Blade Control (IBC) can reduce noise and vibration generated in transition flight. This paper proposed Disturbance Observer Based Control (DOBC) and Time Delay Control (TDC) for individual blade control of an Electro-Mechanical Actuator (EMA) based blade pitch angle control system. To compare and analyze proposed controllers, numerical simulations were conducted with DOBC and TDC.

Development Status and Economic Efficiency of PAV (PAV의 개발현황과 경제적 효율성 비교)

  • Song, Jaedo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.1
    • /
    • pp.61-73
    • /
    • 2021
  • PAV is considered to improve quality of life and standards of living, improvement of which was caused by automobile hundred years ago. Comparative economic efficiency of PAVs is measured to compare each PAV. Specification and sales price of the PAVs are open to the public. BlackFly, Transition and Aeromobil 3.0 have competitive power in flying range, purchasing cost, and operational cost. Lift & cruise configuration and vectored thrust configuration PAVs are designed by many companies nowadays, and BlackFly which can be considered to be lift & cruise configuration is one of the most efficient PAVs. High battery price does not help multi-copter shaped PAVs to have economic efficiency. Aerodynamic wing, eVTOL, and low sale price are needed for PAVs to ride a wave of public interest as a new personal mobility. Under the conditions, the PAV can fly at downtown and can be purchased by people at large. Popularization of PAV could follow in the 100 years old footsteps of automobile.