• Title/Summary/Keyword: 전극배열

Search Result 132, Processing Time 0.02 seconds

ESTIMATING THE VOLUME OF CONSTRUCTION-WASTE LANDFILL USING GEOPHYSICAL TECHNIQUES (물리탐사 기법을 이용한 건축 폐기물 매립지의 규모 파악)

  • Mun,Yun-Seop;Lee,Tae-Jong;Lee,Chae-Yeong;Yun,Jun-Gi
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • Dipole-dipole resistivity and ground penetrating radar(GPR) surveys were performed on an abandoned landfill site filled with asbestos containing material. The main purpose of the study was to estimate spatial extension and volume of the landfill for evaluting the cost for developing appropriate remedial alternatives. Assuming that the bedrock is within 10 m depth, dipole spacings of 2, 2.5 and 5m were set for six survey lines for resistivity measurements. For More detailed information, GPR suvey using 225 Mhz antenna was carried out for twelve survey lines for the shallower information. DC resistivity structures showed few tens ~ hundreds ohm-m for the landfill or alluvial laver, and 1,000~ 5,000 ohm-m for the bedrock. The depth to bedrock is found out to be approximately 5m. GPR survey results represented very clear reflection and/or diffraction events from the boundaries as well as from the blocky construction wastes. With high-resolution GPR survey, depth of the bedrock was resolved up to 2m, which in turn, could be a good indicator for estimating the volume of the landfill. Those depths of bedrock were confirmed by backhoe excavation data for 13 sites. The total area and volume of the landfill were to be approximately 3,953 .$m^2$ and 4,033 $m^3$, respectively.

  • PDF

Negative apparent resistivity in dipole-dipole electrical surveys (쌍극자-쌍극자 전기비저항 탐사에서 나타나는 음의 겉보기 비저항)

  • Jung, Hyun-Key;Min, Dong-Joo;Lee, Hyo-Sun;Oh, Seok-Hoon;Chung, Ho-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • In field surveys using the dipole-dipole electrical resistivity method, we often encounter negative apparent resistivity. The term 'negative apparent resistivity' refers to apparent resistivity values with the opposite sign to surrounding data in a pseudosection. Because these negative apparent resistivity values have been regarded as measurement errors, we have discarded the negative apparent resistivity data. Some people have even used negative apparent resistivity data in an inversion process, by taking absolute values of the data. Our field experiments lead us to believe that the main cause for negative apparent resistivity is neither measurement errors nor the influence of self potentials. Furthermore, we also believe that it is not caused by the effects of induced polarization. One possible cause for negative apparent resistivity is the subsurface geological structure. In this study, we provide some numerical examples showing that negative apparent resistivity can arise from geological structures. In numerical examples, we simulate field data using a 3D numerical modelling algorithm, and then extract 2D sections. Our numerical experiments demonstrate that the negative apparent resistivity can be caused by geological structures modelled by U-shaped and crescent-shaped conductive models. Negative apparent resistivity usually occurs when potentials increase with distance from the current electrodes. By plotting the voltage-electrode position curves, we could confirm that when the voltage curves intersect each other, negative apparent resistivity appears. These numerical examples suggest that when we observe negative apparent resistivity in field surveys, we should consider the possibility that the negative apparent resistivity has been caused by geological structure.