• Title/Summary/Keyword: 전과정 영향평가

Search Result 182, Processing Time 0.027 seconds

A Study on the Environmental Impact Assessment for Passive Apartment based on Life Cycle Assessment (LCA에 기초한 패시브 공동주택의 친환경성 평가에 관한 연구)

  • Gong, Yu-Ri;Tae, Sung-Ho;Song, Suwon;Roh, Seung-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.537-543
    • /
    • 2014
  • As environmental matters such as Green House Effect rise, many construction industries are putting an effort on minimizing environmental impact in terms of building life cycle throughout the world. However, in South Korea, evaluating the eco-friendly building based on life cycle assessment has been facing an academic ostracism while the most studies are focusing on assessing the 6 environmental impact assessments of passive apartment based on life cycle assessment. The theoretical consideration of the life cycle assessment and environmental impact category were performed and the direction of the study was set up. Also, existing apartment and passive apartment, which had same structure and same type were chosen and building materials per unit area were compared to find out the difference environmental impact for building life cycle. As a result, passive apartment was rated as low level among the 6 environmental impacts. Also, effect of building material on passive apartment was more important than its operational stage.

An Environmental Impact Assessment of NPP with the Life Cycle Assessment (전과정평가를 통한 원전의 환경영향 평가 연구)

  • 정환삼;문기환;강명휘
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.297-303
    • /
    • 2002
  • 본 연구에서는 2002년 여름 개최되었던 세계지속가능정상회의에서 채택한 이행계획을 통해 전과정평가의 중요성을 분석하고, 이 방법을 우리나라에서 가동되고 있는 두기의 원전에 적용하여 환경영향을 분석한다. 이 분석에서는 원전의 가동단계에 해당하는 운전ㆍ유지과정을 분석하였다. 여기에는 투입물과 배출물 정보를 모두 사용하였다. 분석시 영향범주는 원전 가동에 따른 자원고갈을 비롯하여 지구온난화와 산성화를 분석하였다.

  • PDF

Evaluations of Life Cycle Assessment on Indium-Tin-Oxide Electrochemical Recycling Process (디스플레이 투명전극용 인듐-주석-산화물의 전기화학적 재활용 공정에 관한 전과정 평가)

  • Kim, Raymund K.I.;Lee, Na-Ri;Lee, Soo-Sun;Lee, Young-Sang;Hong, Sung-Jei;Son, Young-Keun;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.388-392
    • /
    • 2013
  • Iindium-tin-oxide (ITO) material was had to use in display application as transparent electrode. However it would be problems comes up, the depletion of indium, tin and energy consumption of production process. Therefore recently trend was demanded alternative ITO material and recycling/reused ITO. In this conditions, the environmental impact have to express correct value about recycling/reused ITO process. The life cycle assessment was valuable method in this process. Thus first step was carried out separating in/out put (material) sources and then, exactive data base (DB) was applied. The result of environment impact was calculated by affect categories and recycling rate was set to 34% (This value was measured in previous project). The rate (g) of ITO material was calculated by chemical equivalent. In result, environmental impact were revealed acidification potential and abiotic depletion and if do not recycle/reuse ITO, $ 476 per 1 ton waste in land.

Development of Green Template for Building Life Cycle Assessment Using BIM (건축물 LCA를 위한 BIM 친환경 템플릿 개발에 관한 연구)

  • Lee, Sung Woo;Tae, Sung Ho;Kim, Tae Hyoung;Roh, Seung Jun
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • The purpose of this study is to develope BIM Template according to major building material for efficiently and quantitatively evaluating greenhouse gas emission at the design stage. Template users consider various environmental impacts without connecting simulation tools for analyzing environmental impact and Template users who have no prior knowledge can Life Cycle Assessment by using The green template. For this study, Database which was reflected in template was constructed considering environmental performance. and 6 kinds of environmental impact categories and PPS standard construction codes were analyzed by major building material derived from literature. Based on this analyzed data, The major Material Family according to the main building material was developed. When users conduct modeling by utilizing Family established, evaluating result can be confirmed in the Revit BIM Modeling program by using the schedule function of the Revit. Users through the modeling, the decision-making environment performance possible. In addition, we propose to create a guideline for the steps required to build an additional established family.

Approximate Life Cycle Assessment of Product Family in Early Product Design Stage (초기 제품 설계 단계에서 제품군의 근사적 전과정 평가)

  • 박지형;서광규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.780-783
    • /
    • 2002
  • This paper proposes an approximate LCA methodology fur the conceptual design stage by grouping products according to their environmental characteristics and by mapping product attributes Into impact driver (ID) index. The relationship Is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then an artificial neural network model is developed to predict an approximate LCA of grouping products in conceptual design stage. The training is generalized by using identified product attributes for an ID In a group as well as another product attributes for another IDs in other groups. The neural network model with back propagation algorithm is used and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give an approximate LCA results for design concepts.

  • PDF

Comparative LCA of three types of Interior Panel (IP) in Electric Motor Unit (EMU) (전동차 내장패널(Interior Panel)에 대한 비교 전과정평가)

  • Choi, Yo-Han;Lee, Sang-Yong;Kim, Yong-Ki;Lee, Kun-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.596-599
    • /
    • 2007
  • A comparative Life Cycle Assessment (LCA) among three types of Electric Motor Unit (EMU) Interior Panel (IP) was conducted. A functional unit for comparative LCA is a weight of IP for 1 EMU. It is assumed that Manufacturing stage and its upstream processes, Use stage and End of Life (EoL) stage are included in the boundary of product system. For Use stage, the weight of IP causes electricity consumption. It is assumed that aluminum IP is recycled and the other IPs are incinerated at the EoL stage. As a comparison results, aluminum IP has much larger environmental impact (5.162pt) than others (FRP IP; 4.069pt, Phenol IP; 4.053pt) even though recycling consideration is included. The manufacturing stage of aluminum IP has relative big environmental impact (1.824pt) and this point make the most important difference from other IPs (FRP IP; 0.1617pt, Phenol IP; 0.4534pt)). Despite of large weight difference between FRP IP (888.96kg) and phenol IP (316kg), the final environmental impact result has only little difference (0.016pt, 0.39%). With this result, the EMU designer can choose IP with a consideration of the environmental performance of IP.

Life Cycle Assessment on Pump and Treatment Remediation of Contaminated Groundwater (오염 지하수 양수 및 처리 공정에 대한 전과정평가)

  • Cho, Jong-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.405-412
    • /
    • 2011
  • Environmental impact by proposed pump and treatment remediation of groundwater contaminated with TCE over 0.6 mg/L down to 0.005 mg/L was assessed for 30 years operation in an industrial park. Total amount of groundwater treated was $2.96{\times}10^7m^3$ and the amount of TCE removed was 17.6 kg at most. The life cycle assessment was used to estimate the environmental cost and environmental benefit and their effects on the environment could be analyzed. Most of the environmental cost was accrued from electricity generation for 30 years pump operation, which includes energy consumption, resources consumption such as coal, crude oil, emission of global warming gas and acid gas into air, waste water production, and waste generation. Environmental impact could be quantified with a Life Cycle Assessment (LCA) model for soil and groundwater remediation and normalized based upon consumption and emission quantities per capita in the world. Among the normalized values, acidification material release was the most significant.

Life Cycle Assessment of Activated Carbon Production System by Using Poplar (포플러를 이용한 활성탄 제조 시스템에 대한 전과정 평가)

  • Kim, Mihyung;Kim, Geonha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.725-732
    • /
    • 2014
  • Phytoremediation is a technology to mitigate the pollutant concentrations such as metals, pesticides, solvents, oils, or others in contaminated water and soils with plants. The plants absorb contaminants through the root and store them in the root, stems, or leaves. Rapid growth trees such as poplar are used to remove low concentrated contaminants eco-friendly and economically in a wide contaminated region. This study was practiced to evaluate an activated carbon production system by using poplar wood discarded after phytoremediation. Life cycle assessment methodology was used to analyze environmental impacts of the system, and the functional unit was one ton of harvested poplar. It was estimated that the small size rotary kiln for activated carbon production from poplar wood had an environmental benefit in optimized conditions to minimize energy consumptions. The results of an avoided environmental impact analysis show that the system contribute to reduce environmental impacts in comparison with activated carbon production from coconut shell.

Life Cycle Assessment of Steel Box Girder Bridge (강교량구조물의 환경적합성에 관한 전과정평가)

  • Kim, Sang-Hyo;Choi, Moon-Seock;Cho, Kwang-Il;Yoon, Ji-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.269-278
    • /
    • 2011
  • Recently, methods on minimizing environmental effect caused from human-made goods have been studied in various research fields. Such issue has been also spotlighted into the civil engineering field; however, application of environmental performance assessment on civil structures is very complicated, since they handles vast ranges of materials and has comparatively long life span with various construction stages. Thus, this study intended to apply environmental performance assessment into an ordinary type of steel box girder bridge, using most popular Life cycle assessment (LCA) procedures, which are called Survey-based method and Indirect method. For better comparison of two methods, greenhouse effect of the example bridge is considered. As result of analysis, total $CO_2$ emission is evaluated as 241.27 ton with Survey-based method while it is evaluated as 221.03 ton with Indirect method. It is also revealed that most $CO_2$ is generated from the process of manufacturing and producing construction materials. Such result indicates that the efficient design which secures certain level of structural safety with minimized input materials. It is considered that the specific LCA on civil structure performed in this study could be utilized to other civil structures for reasonable environmental performance assessment.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.