Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.66-67
/
2012
본 논문에서는 고정된 카메라로 촬영한 동영상에서 수퍼픽셀(superpixel)을 이용하여 전경 객체 영역을 효과적으로 검출하는 기법을 제안한다. 기존의 픽셀 기반 전경 객체 검출 기법들은 단위 픽셀에 대한 전/배경 판단을 수행하므로 실제 전경 객체 영역에 대한 정확한 검출이 어려운 단점을 지닌다. 수퍼픽셀은 성질이 유사한 픽셀들의 집합을 의미하며 영상의 과도한 분할에 주로 사용되었다. 본 논문에서는 이러한 수퍼픽셀을 이용하여 동영상의 각 프레임을 과도 분할하고, 분할된 각각의 수퍼픽셀을 전경 객체와 배경의 판단 단위로 이용한다. 제안하는 알고리듬을 적용하여 실험한 결과 기존의 픽셀 단위 검출 기법에서 나타났던 오검출을 줄임과 동시에 전경 객체의 형태를 보다 충실하게 검출함을 확인 할 수 있다.
Detection of moving objects is a fundamental task in most of the computer vision applications, such as video surveillance, activity recognition and human motion analysis. This is a difficult task due to many challenges in realistic scenarios which include irregular motion in background, illumination changes, objects cast shadows, changes in scene geometry and noise, etc. In this paper, we propose an foreground extraction algorithm based on codebook, a database of information about background pixel obtained from input image sequence. Initially, we suppose a first frame as a background image and calculate difference between next input image and it to detect moving objects. The resulting difference image may contain noises as well as pure moving objects. Second, we investigate a codebook with color and brightness of a foreground pixel in the difference image. If it is matched, it is decided as a fault detected pixel and deleted from foreground. Finally, a background image is updated to process next input frame iteratively. Some pixels are estimated by input image if they are detected as background pixels. The others are duplicated from the previous background image. We apply out algorithm to PETS2009 data and compare the results with those of GMM and standard codebook algorithms.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.1
/
pp.9-16
/
2010
Moving object detection is to detect foreground object different from background scene in a new incoming image frame and is an essential ingredient process in some image processing applications such as intelligent visual surveillance, HCI, object-based video compression and etc. Most of previous object detection algorithms are still computationally heavy so that it is difficult to develop real-time multi-channel moving object detection in a workstation or even one-channel real-time moving object detection in an embedded system using them. Foreground mask correction necessary for a more precise object detection is usually accomplished using morphological operations like opening and closing. Morphological operations are not computationally cheap and moreover, they are difficult to be rendered to run simultaneously with the subsequent connected component labeling routine since they need quite different type of processing from what the connected component labeling does. In this paper, we first devise a fast and precise foreground mask correction algorithm, "Neighbor Foreground Pixel Propagation (NFPP)" which utilizes neighbor pixel checking employed in the connected component labeling. Next, we propose a novel moving object detection method based on the devised foreground mask correction algorithm, NFPP where the connected component labeling routine can be executed simultaneously with the foreground mask correction. Through experiments, it is verified that the proposed moving object detection method shows more precise object detection and more than 4 times faster processing speed for a image frame and videos in the given the experiments than the previous moving object detection method using morphological operations.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.9
/
pp.1120-1131
/
2016
In this paper, we propose a smoker recognition algorithm, detecting smokers in a video sequence in order to prevent fire accidents. We use description-based method in hierarchical approaches to recognize smoker's activity, the algorithm consists of background subtraction, object detection, event search, event judgement. Background subtraction generates slow-motion and fast-motion foreground image from input image using Gaussian mixture model with two different learning-rate. Then, it extracts object locations in the slow-motion image using chain-rule based contour detection. For each object, face is detected by using Haar-like feature and smoke is detected by reflecting frequency and direction of smoke in fast-motion foreground. Hand movements are detected by motion estimation. The algorithm examines the features in a certain interval and infers that whether the object is a smoker. It robustly can detect a smoker among different objects while achieving real-time performance.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.5
/
pp.191-198
/
2013
This paper proposes detection of view reversal in a stereo video using depth map and motion vector information. We obtain a depth map by using a stereo matching and divide the input image into foreground and background. Next, we obtain a motion vector field by using a motion estimation. In general, an occluded region is in background when foreground goes toward the adjacent background or the background goes toward the adjacent foreground. But, we will face with the change of foreground and background because their depths also change when view reversal occurs. Therefore, we can detect the view reversal in stereo videos by using the observation that the foreground goes toward the adjacent background or the background goes toward the adjacent foreground. The experimental results show that the proposed algorithm achieves good detection rate when the background region is sufficiently occluded by the moving foreground.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.1
/
pp.27-37
/
2004
The detection of foreground objects in a projection display using color information can be hard due to changing lighting conditions and complex backgrounds. Accordingly, the current paper proposes a foreground object detection method using color information that is obtained from the input image to the Projector and an image captured by a camera above the projection display. After pixel correspondences between the two images are found by calibrating the geometry distortion and color distortion, the natural color variations are estimated for the projection display. Then, any pixel that has another variation not resulting from natural geometry or color distortion is considered a part of foreground objects, because a foreground object in a projection display changes the values of pixels. As shown by experimental results, the proposed foreground detection method is applicable to an interactive projection display system such as the DigitalDesk
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.1010-1012
/
2017
본 논문에서는 HSV, YCbCr 컬러 모델의 색상정보를 통한 화재 검출 알고리즘을 제안한다. 첫 번째 단계에서는 영상의 변화를 감지하기 위해서 입력된 영상으로부터 평균배경영상을 계산하여 전경영상을 분리한다. 그리고 차영상을 이용해 움직임을 인식하여 컬러 모델 색상정보를 비교할 영역을 구한다. 전경영상의 구해진 영역에서 컬러모델의 복합 색상정보를 이용하여 화재 영역을 검출한다.
Kim, Sang-Ho;Kang, Hyun;Lee, Chang-Woo;Jung, Kee-Chul;Kim, Hang-Joon
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.520-522
/
2003
디지털데스크는 일반 책상 표면에 프로젝션 화면을 만들어 가상물체를 사람이 직접 조작할 수 있는 인터페이스를 제공한다. 이러한 인터페이스를 구축하기 위해서는 전경물체 검출이 필수 과정인데, 지금까지는 조명과 배경의 변화로 인한 색상의 변화로 인하여 색상 정보를 사용하지 못하였다. 본 논문에서는 디지털데스크 상에서 색상 정보를 이용하여 전경물체를 검출하는 방법을 제안한다. 디지털데스크의 화면은 프로젝터를 통해 책상 표면에 투사되고, 투사된 화면은 카메라를 통해 영상으로 획득되는데, 이때 많은 왜곡이 존재하게 된다. 우리는 이런 왜곡을 기하 왜곡과 색 휘도의 왜곡 두가지로 정의하여 모델링하였고. 실험 결과에서 제안된 방법의 실효성을 입증하였다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.784-786
/
2004
프로젝션 화면(projection display) 상에 보여지는 가상의 물체를 사용자가 직접 조작할 수 있는 인터페이스를 제공하기 위해서는 전경 물체를 검출해내는 과정이 필수적이다. 이전의 색상 정보만을 이용하는 방법은 몇 가지 제약 조건을 가지고 있었다. 본 논문은 색상 보정 (color calibration)과 스테레오 정보(stereo information)를 이용하여 프로젝션 화면 내의 전경물체를 검출하는 방법을 제안한다. 실험에서는 프로젝터를 통해 책상 표면에 투사되는 영상과 일반 캠코더를 통해 얻어진 영상 사이의 왜곡을 기하 왜곡과 색상 왜곡으로 정의하여 모델링 하였고, 스테레오 정보를 이용하여 얻어진 최종 결과를 통해 제안된 방법의 실효성을 입증할 수 있었다.
Proceedings of the Korea Multimedia Society Conference
/
2002.05d
/
pp.622-625
/
2002
부분방전의 특성을 연구하기 위하여 트리패턴을 추출하는 과정을 이용하는데, 트리열화 과정의 재현성이 떨어지고 트리의 패턴이 복잡함으로 기존의 시각적 관측으로는 트리성장의 정확한 정량화가 어렵기 때문에 영상처리에 의한 실시간 처리가 제안되고 있다. 본 연구에서는 부분방전의 측정을 위해 영상처리에 필요한 전반적인 과정을 제시하고, 특히 제안된 전경 물체 추출기법을 이용하여 측정된 영상에서 배경과 전경을 분할하여 전기트리를 측정하고자 한다. 전경 물체를 추출하기 위하여 전기트리를 측정한 영상에서 현재 프레임과 다음 프레임과의 차이 영상을 이용한 차이 검출 마스크를 사용하고, 추출된 전경 물체에서 에지를 검출하여 부분방전시 발생되는 전기트리를 실시간으로 계측 및 정량화하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.