• Title/Summary/Keyword: 적층 파라미터

Search Result 42, Processing Time 0.023 seconds

Optimal Design of the Stacking Sequence on a Composite Fan Blade Using Lamination Parameter (적층 파라미터를 활용한 복합재 팬 블레이드의 적층 패턴 최적설계)

  • Sung, Yoonju;Jun, Yongun;Park, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.411-418
    • /
    • 2020
  • In this paper, approximation and optimization methods are proposed for the structural performance of the composite fan blade. Using these methods, we perform the optimal design of the stacking sequence to maximize stiffnesses without changing the mass and the geometric shape of the composite fan blade. In this study, the lamination parameters are introduced to reduce the design variables and space. From the characteristics of lamination parameters, we generate response surface model having a high fitness value. Considering the requirements of the optimal stacking sequence, the multi-objective optimization problem is formulated. We apply the two-step optimization method that combines gradient-based method and genetic algorithm for efficient search of an optimal solution. Finally, the finite element analysis results of the initial and the optimized model are compared to validate the approximation and optimization methods based on the lamination parameters.

Analysis of Variations in Deformations of Additively Manufactured SUS316L Specimen with respect to Process Parameters and Powder Reuse (금속 적층제조 방식을 이용한 SUS316L 시편의 공정 파라미터 및 금속 분말 재사용에 따른 변형량 변화 분석)

  • Kim, Min Soo;Kim, Ji-Yoon;Park, Eun Gyo;Kim, Tae Min;Cho, Jin Yoen;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • Residual stress that can occur during the metal additive manufacturing process is an important factor that must be properly controlled for the precise production of metal parts through 3D printing. Therefore, in this study, the factors affecting these residual stresses were investigated using an experimental method. For the experiment, a specimen was manufactured through an additive manufacturing process, and the amount of deformation was measured by cutting it. By appropriately calibrating the measured data using methods such as curve fitting, it was possible to quantitatively analyze the effect of process parameters and metal powder reuse on deformation due to residual stress. From this result, it was confirmed that the factor that has the greatest influence on the magnitude of deformation due to residual stress in the metal additive manufacturing process is whether the metal powder is reused. In addition, it was confirmed that process parameters such as laser pattern and laser scan angle can also affect the deformation.

면진용 적층고무베아링의 히스테레틱 거동에 대한 수학적 해석 모델

  • Koo, Gyeong-Hoe;Lee, Jae-Han;Yoo, Bong;Kwon, Hyuk-Seon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.879-884
    • /
    • 1998
  • 본 연구에서는 현재 국내에서 개발중인 액체금속로 KAL IMER(Korea L Iquid MEt a l Reactor)의 면진설계에 적용하기 위한 적층고무베어링의 수학적 해석모델을 개발하고자 한다. 이를 위하여 수정 비선형 Rate 모델과 특성실험 결과로 부터 구한 파라미터 특성식을 이용한 적층고무베어링의 해석모델 수립하고 이를 1자유도계 지진모델에 적용하여 히스레레틱 거동에 대한 해석적 결과와 적층고무베어링의 특성 실험결과와 비교분석하여 해석모델의 정확성을 검토하였다.

  • PDF

Inverse Estimation and Verification of Parameters for Improving Reliability of Impact Analysis of CFRP Composite Based on Artificial Neural Networks (인공신경망 기반 CFRP 복합재료 충돌 해석의 신뢰성 향상을 위한 파라미터 역추정 및 검증)

  • Ji-Ye Bak;Jeong Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • Damage caused by impact on a vehicle composed of CFRP(carbon fiber reinforced plastic) composite to reduce weight in the aerospace industries is related to the safety of passengers. Therefore, it is important to understand the damage behavior of materials that is invisible in impact situations, and research through the FEM(finite element model) is needed to simulate this. In this study, FEM suitable for predicting damage behavior was constructed for impact analysis of unidirectional laminated composite. The calibration parameters of the MAT_54 Enhanced Composite Damage material model in LS-DYNA were acquired by inverse estimation through ANN(artificial neural network) model. The reliability was verified by comparing the result of experiment with the results of the ANN model for the obtained parameter. It was confirmed that accuracy of FEM can be improved through optimization of calibration parameters.

Design of 900MHz Low Noise Amplifier (900MHz대 저전력 저잡음 증폭기 설계)

  • 김영호;정항근
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.671-674
    • /
    • 1998
  • 본 논문에서는 최근 급격히 수요가 증대하고 있는 휴대용 단말기의 수신기 선단에 사용되는 저잡음 증폭기(LNA)를 0.6㎛ CMOS공정 파라미터를 사용하여 설계하였다. 설계된 LNA는 전원 전압 ±1.2v, 900㎒대에서 동작하는 전류 재사용방식의 적층 CMOS구조로서 시뮬레이션 결과 전력소모가 9.45㎽, 전력이득은 23.7dB, 선형지수 OIP3는 7.6dBm을 나타내어 저전력 저잡음 특성을 얻었다. 사용된 인덕터의 Q는 3.5이다.

  • PDF

A Design of Dual-band Microstrip Patch Antenna in Multilayered Planner Structures for IMT-2000 systems (IMT-2000 주파수대역에서 이중공진 적층구조 마이크로스트립 패치 안테나의 설계 및 제작)

  • 오상진;윤중한;이상목;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.907-915
    • /
    • 2001
  • 본 논문에서는 차세대 이동통신인 IMT-2000 (하향: 1.885GHz∼2.025GHz) 주파수대역에서 동작하는 정사각형 적층구조 마이크로스트립 안테나를 설계 및 제작 측정하였다. 송/수신 주파수대역이 서로 상이한 IMT-2000 주파수대역에서 동작하도록 하기 위해 시뮬레이터를 사용하여 이중공진 안테나를 설계하였으며 최적화된 파라미터를 가지고 실제 제작 및 측정하였다. 측정된 결과는 다음과 같다. 공진주파수는 1.8475GHz, 2.2GHz에서 각각 나타났으며 대역폭은 각각 10.2%와 7.8%에 이르는 결과를 얻었다. 그리고 반사계수는 -18dB, -27dB로 나타났다. 이득은 시뮬레이터를 이용한 결과를 보면 8dB∼10dB의 높은 이득을 얻을 수 있음을 알 수가 있다.

  • PDF

A Model for Fatigue Life In CFRP Laminates with Impact Damage (충격손상을 가진 CFRP 적층복합재료의 피로수명예측모델)

  • Gang, Gi-Won;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2828-2835
    • /
    • 2000
  • This paper presents the fatigue behavior of composite materials with impact-induced damage. The impact damage parameter is proposed to evaluate the effect of impact damage on fatigue life. Subsequently, a new model is developed to predict the fatigue life of impacted composite materials. Also, a stochastic model is proposed to describe the variation of fatigue life due to the material nonhomogeneity. For these models, the fatigue tests were performed on the unimpacted and impacted composite materials, The effect of impact damage on fatigue life can be characterized by the impact damage parameter. Additionally, the results by the present fatigue life prediction model agree will with experimental results regardless of applied impact energy. Also, the variation of fatigue life can be described by the present stochastic model and is reduced with applied impact energy.

Fatigue Characteristics in CFRP Laminates with Impact Damage (충격손상 CFRP 적층복합재료의 피로특성)

  • Kang, Ki-Weon;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.225-230
    • /
    • 2000
  • This paper presents the fatigue behavior of composite materials with impact-induced damage. The impact damage parameter is proposed to evaluate the effect of impact damage on fatigue life. Subsequently, a new model is developed to predict the fatigue life of impacted composite materials. Also, a stochastic model is proposed to describe the variation of fatigue life due to the material nonhomogeneity. For these models, the fatigue tests were performed on the unimpacted and impacted composite materials. The effect of impact damage on fatigue life can be characterized by the impact damage parameter. Additionally, the results by the present fatigue life prediction model agree well with experimental results regardless of applied impact energy. Also, the variation of fatigue life can be described by the present stochastic model and is reduced with applied impact energy.

  • PDF

Fatigue Life Predication of Impacted Laminates Under Block Loading (블록하중을 받는 충격손상 적층복합재료의 피로수명 예측)

  • Kim, Jeong-Gyu;Gang, Gi-Won;Yu, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1089-1096
    • /
    • 2001
  • This paper presents the fatigue behavior of composite materials with impact-induced damage under 2 level block loading. For this purpose, the 2 level block loading fatigue tests were performed on the impacted composite laminate. The fatigue life of the laminate under the block loading is greatly influenced by the impact damage; the effect of impact damage can be characterized by the present impact damage parameter. Based on this parameter, the model is developed to predict the fatigue life under block loading and the results by this model agree well with experimental results regardless of applied impact energy. Also, stochastic model is established to describe the variation of cumulative damage behavior and fatigue life due to the material nonhomogeneity.

A Study on Statistical Characteristics of Fatigue Life of Carbon Fiber Composite (탄소섬유 복합재 피로수명의 통계적 특성 연구)

  • Joo, Young-Sik;Lee, Won-Jun;Seo, Bo-Hwi;Lim, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.35-40
    • /
    • 2019
  • The objective of this paper is to identify the fatigue properties of carbon-fiber composite which is widely applied for the development of aircraft structures and obtain data for full-scale fatigue test. The durability and damage tolerance evaluation of composite structures is achieved by fatigue tests and parameters such as fatigue life factor and load enhancement factor. The specimens are made with carbon-fiber/epoxy UD tape and fabric prepreg. Fatigue tests are performed with several stress ratios and lay-up patterns. The Weibull shape parameters are analyzed by Sendeckyj model and individual fatigue lives with Weibull distribution. And the fatigue life factor and load enhancement factor considering reliability are evaluated.