• Title/Summary/Keyword: 적층 높이

Search Result 61, Processing Time 0.031 seconds

4H-SiC bulk single crystal growth using recycled powder (재생 분말을 활용한 4H-SiC 벌크 단결정 성장)

  • Yeo, Im Gyu;Lee, Jae Yoon;Chun, Myong Chuel
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.169-174
    • /
    • 2022
  • This study is to verify the feasibility of SiC single crystal growth using recycled SiC powder. The fundamental physical properties such as particle size, shape, composition and impurities of the recycled powder were analyzed, and the sublimation behavior occurring inside the reactor were predicted using the basic data. As a result of comprehensive judgment, the physical properties of the recycled powder were suitable for single crystal growth, and single crystal growth experiments were conducted using this. 100 mm 4H-SiC single crystal ingot with a height of 25 mm was grown without polytype inclusion. In the case of micro-pipe density was 0.02 ea/cm2 and resistivity characteristics was 0.015~0.020 ohm·cm2, commercial level quality was obtained, but additional analysis related to dislocation density and stacking faults is required for device application.

Strength Evaluation of Pinus rigida Miller Wooden Retaining Wall Using Steel Bar (Steel Bar를 이용한 리기다소나무 목재옹벽의 내력 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.318-325
    • /
    • 2011
  • Pitch pine (Pinus rigida Miller) retaining walls using Steel bar, of which the constructability and strength performance are good at the construction site, were manufactured and their strength properties were evaluated. The wooden retaining wall using Steel bar was piled into four stories stretcher and three stories header, which is 770 mm high, 2,890 mm length and 782 mm width. Retaining wall was made by inserting stretchers into Steel bar after making 18 mm diameter of holes at top and bottom stretcher, and then stacking other stretchers and headers which have a slit of 66 mm depth and 18 mm width. The strength properties of retaining walls were investigated by horizontal loading test, and the deformation of structure by image processing (AlCON 3D OPA-PRO system). Joint (Type-A) made with a single long stretcher and two headers, and joint (Type-B) made with two short stretchers connected with half lap joint and two headers were in the retaining wall using Steel bar. The compressive shear strength of joint was tested. Three replicates were used in each test. In horizontal loading test the strength was 1.6 times stronger in wooden retaining wall using Steel bar than in wooden retaining wall using square timber. The timber and joints were not fractured in the test. When testing compressive shear strength, the maximum load of type-A and Type-B was 130.13 kN and 130.6 kN, respectively. Constructability and strength were better in the wooden retaining wall using Steel bar than in wooden retaining wall using square timber.

An analyses of the noise reduction effect of vegetation noise barrier using scaled model experiments (모형실험을 통한 식생형 방음벽의 소음저감 효과 분석)

  • Haan, Chan-Hoon;Hong, Seong-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.223-233
    • /
    • 2016
  • Design of a vegetation type sound barrier was presented as a noise barrier on the boundary of neighborhood facilities including schools, and apartments. The suggested noise barrier is made of unit blocks that are to be formed by stacking over the wall structure containing the plant and soils in the blocks. The advantage of the vegetation noise barrier is to acquire not only sound absorptive effects of plants and soils, but also sound diffusive effect caused by the irregular surface of the barrier which could eventually mitigate the noise. First, the optimum size of the units to obtain the highest noise reduction was investigated using 1/10 scaled model experiment, and sound attenuation experiments were carried out using a 1/2 mock-up model which is 2 m high and 5 m long. Total 1,137 unit blocks were made of synthetic woods with the size of $10{\times}10{\times}9cm$. These unit blocks were installed on the both side of the 1/2 mock-up steel framed noise barrier. As a result, it was revealed that the block typed vegetation noise barrier has 7 dB higher insertion loss in comparison with the general plane noise barrier. Also, it was found that the appropriate size of unit blocks is $20{\times}20cm$ which has large effect of sound insertion loss.

분무진공동결건조기 개발

  • Ryu, Gyeong-Ha;Ban, Byeong-Min;Kim, Jae-Hyeong;Son, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.258-258
    • /
    • 2013
  • 최근 건조 제품의 양질화, 고급화 및 편의화가 요구되어 이를 충족시키기 위한 새로운 건조방법이 계속 개발 되어 왔다. 이러한 방법들 중에서 저온과 진공하에서 건조가 이루어지는 진공 동결 건조는 가장 완벽한 건조 방법으로 최근 실용화 되고 있다. 진공동결건조란 건조의 한 종류로 수분을 함유한 시료를 동결시킨 후 진공펌프를 이용하여 수증기압을 3중점 이하로 낮추어 얼음을 직접 증기로 만드는 승화의 원리에 의해서 얻어진다. 분무진공동결건조의 특징은 (1) 물리적구조의 보존성, (2) 화학적인 안정성, (3) 생물학적인 활동의 보존성, (4) 제품의 높은 복원성 및 재생성이다. 따라서 분무진공동결건조 기술은 크게 진공, 분무, 동결, 건조, 멸균 등과 같은 요소기술의 복합기술이라 할 수 있다. 분말을 제조하기 위해서 진공동결건조 후 분쇄하는 방법을 사용하나 본 방법에서는 정밀화학품 제조를 위해서 분무진공동결건조 방식을 사용한다. 이를 통하여 적당한 크기인 5~10 um의 입경 제조가 가능하고, 공기동력학적인 입경이 기존 방식에 비해 작아서 허파까지의 운반효율이 1.5~2배 우수하다. 화학, 의학 분야에서의 분무동결 건조는 주로 민감한 제품, 즉 생물학적 고유성의 손상 없이 물을 제거하는데 사용되어 영구적으로 저장 가능한 상태로 보관할 수 있으며 물의 첨가로 원상태로 복구할 수 있어서 매우 각광을 받고 있다. 의약용 냉동건조 제품은 항생물질, 박테리아, 혈청, 백신, 검사 약물, 단백질을 포함하는 생물공학 제품들, 세포, 섬유, 화학제품 등이 있으며 주로 vial 또는 ampule 상태로 건조가 이루어진다.본 연구에서는 원료를 $-194^{\circ}C$의 액체질소에 분무시켜 동결된 미립자를 형성한 후 진공 및 저온상태에서얼음의 승화(sublimation)에 기반한 1차 건조와 수증기 탈착(desorption)에 기초한 2차 건조 과정으로 구성된 분무진공동결건조기를 개발하였다. 분무동결 과정의 해석을 통해 2유체식 노즐을 통해 분무된 미세 입경의 액적이 액체 질소 표면까지 도달하는 회수률, 분무 노즐의 위치, 운전 조건 및 용기의 설계의 최적화를 수행하였다. 초기 액적속도, 분무노즐의 높이, 흡입구 추가에 따른 액적 유동 및 회수의 특성을 제시하였으며 이를 통한 분사시스템 고도화 가능성을 제시하였다. 구형의 미세 입자가 적층된 제품의 동결건조 공정의 해석은 흡착승화 모델(sorption sublimation model)을 기반으로 다음과 같은 열전달, 물질전달, 상변화 모델을 고려하여 유도되었다. 분무노즐 및 냉동/진공 배기계 시작품을 개발하여, 표면의 고다공도를 갖춘 입경 3~20 m 정도의 시료를 얻을 수 있으며, 동역학적 입경 5 m 충족함을 확인하였다.

  • PDF

Design, Fabrication and Evaluation of a Conduction Cooled HTS Magnet for SMES (SMES용 전도냉각형 고온초전도 자석의 설계, 제작 및 평가)

  • Bae, Joon-Han;Kim, Hae-Jong;Seong, Ki-Chul
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • This paper describes design, fabrication, and evaluation of the conduction cooled high temperature superconducting (HTS) magnet for superconducting magnetic energy storage (SMES). The HTS magnet is composed of twenty-two of double pancake coils made of 4-ply conductors that stacked two Bi-2223 multi-filamentary tapes with the reinforced brass tape. Each double pancake coil consists of two solenoid coils with an inner diameter of 500 mm, an outer diameter of 691 mm, and a height of 10 mm. The aluminum plates of 3 mm thickness were arranged between double pancake coils for the cooling of the heat due to the power dissipation in the coil. The magnet was cooled down to 5.6 K with two stage Gifford McMahon (GM) cryocoolers. The maximum temperature at the HTS magnet in discharging mode rose as the charging current increased. 1 MJ of magnetic energy was successfully stored in the HTS magnet when the charging current reached 360A without quench. In this paper, thermal and electromagnetic behaviors on the conduction cooled HTS magnet for SMES are presented and these results will be utilized in the optimal design and the stability evaluation for conduction cooled HTS magnets.

Shaking Table Test of a 1/10 Scale Isolated Fifteen-story Flat Plate Apartment Building (면진층을 가지는 1/10 축소된 15층 무량판 아파트건물의 진동대 실험)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.287-297
    • /
    • 2011
  • This paper presents the results of performance verification tests of the isolated flat plate apartment building with the laminated rubber bearings. The shaking table test is carried out in CABR(China Academy of Building Research) with two 1/10 scale isolation and non-isolation models under 4 excitation waves. The shaking table test is proceeding from x axis, y axis and x+y axis with different amplitude of acceleration values. The results show that, to non-isolated model, the natural vibration period is remarkably decreased and entered non-linear condition after moderate earthquake. Its accelerations become lager with increasing storey number and completely collapsed under large earthquake. The inter-storey shifts largely exceed the limit values of regulated displacement angles. But to isolated model, the natural vibration period of isolated modal is almost the same in all conditions and still in its elastic condition. The earthquake loading is greatly reduced and the accelerations of superstructure are greatly reduced. The inter-storey drifts are very small and can be neglected. The isolated model is in translational state and can be seen as a rigid whole. The displacements of isolation layer are in the allowable range. This experiment demonstrates that the seismic isolation is very effective to mitigate the influence of earthquake on structures and it is possible to increase the serviceability due to decrease the floor acceleration. facilities from their good states that is superior to non-isolated structure.

EFFECT OF CALCIUM HYDROXIDE ON BOND STRENGTH OF DENTIN BONDING SYSTEMS (수산화칼슘 적용에 따른 상아질 접착제의 접착강도 변화에 관한 연구)

  • Park, No-Hoon;Park, Sang-Hyuk;Choi, Gi-Woon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.198-207
    • /
    • 2007
  • The purpose of this study was to investigate the effect of calcium hydroxide on dentin bonding strength of various dentin bonding systems as a function of time in composite resin restoration. Dentin adhesives used in this study were Scotchbond Multipurpose, Single Bond, SE Bond and Prompt L-Pop. Flat dentin surfaces adjacent to pulp chamber were created, then $Ca(OH)_2$ and saline were mixed and applied on dentin surface of experimental group, then IRM was used to cover the mixture on dentin surface and the specimens were stored at $36.5^{\circ}C$ for experiment period (7 days, 30 days). After removing IRM and $Ca(OH)_2$, each dentin adhesives were treated on dentin surfaces. Composite resin (Z-250, 3M) was placed with S mm height and was light-cured for 20 seconds. After stored in distilled water for 24 hours, each dentin-composite bonded spicemen was embedded in epoxy resin and sectioned into $1.0\times1.0mm^2$ cross section composite-dentin beams. Specimen was mounted on zig of Universal testing machine and ${\mu}TBS$ test was performed. SEM analysis was performed to examine the fractured surfaces. The results suggested that applying calcium hydroxide did not show significant difference in dentin bonding strength.

Evaluation of Fire Investigation as the Separation Distances for Several Types of Insulation Panels (단열패널 종류별 이격거리에 따른 화재감식 평가)

  • Kim, Jeong-Hun;Kim, Da-Seul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.403-412
    • /
    • 2021
  • Despite strengthening requirements for fire retardancy and applied buildings of insulation panels, the number of fires and influence of damage have increased. In this study, the thermal effects were evaluated as the separation distances, and three types of EPS panel, glass wool panel, and gypsum board panel were then selected. Temperature sensors on the panels were installed vertically from the ground. The fire source on the lamination layer of lumber was ignited by changes in the separation distances (0 cm, 25 cm, 50 cm) from the panels. The test results suggested that the maximum temperature was 349 ℃ in the EPS panel. The inside/outside shape changes were limited by the height of the low and middle positions until the critical point of a 25 cm separation distance. Furthermore, the combustion marks appeared after 500 s on average, and then the EPS panel with a high fire strength showed a broad "U type" pattern, glass wool panel, and gypsum board panel showed medium or narrow "V type" pattern. Therefore, the acquired data can provide valuable information for evaluating the fire risks and verifying fire investigation from buildings composed of these insulation panels.

A study of the antifungal properties and flexural strength of 3D printed denture base resin containing titanium dioxide nanoparticles (이산화티타늄 나노입자를 함유한 3D 프린팅 의치상 레진의 항진균성 및 굽힘 강도에 대한 연구)

  • Seok-Won Yoon;Young-Eun Cho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • Purpose. With the advancement of digital technology, 3D printing is being utilized in the fabrication of denture base. Nevertheless, increasing microbial adhesion to the surface of denture base has been reported as the disadvantage of 3D-printed denture base. The purpose of this study is to investigate the antifungal properties and flexural strength of 3D-printed denture base resin according to the different contents of titanium dioxide nanoparticles. Materials and methods. Titanium dioxide nanoparticles were mixed with the 3D printing resin at the ratios of 0.5, 1, 1.5, and 2 wt%. Twenty specimens per each group were printed in the form of cylindrical shape (diameter: 20 mm, height: 3 mm) to evaluate antifungal properties. Ten specimens from each group underwent polishing using autogrinder, while the remaining ten specimens did not. Candida albicans in hyphae form was inoculated onto each specimen, optical density and colony-forming unit were analyzed. The surface of the specimen was observed using scanning electron microscopy. To evaluate the flexural strength, twenty specimens per each group were 3D printed in the form of rectangular prism shape (length: 64 mm, height: 10 mm, width: 3 mm) and three-point bending tests were conducted using universal testing machine according to ISO 20795-1. Results. Colony-forming unit of C.albicans and optical density of culture medium showed no difference between non-polished groups, but decreased in the polished groups at concentration of 1, 1.5, 2 wt% titanium dioxide nanoparticles. Flexural strength increased with titanium dioxide nanoparticle at concentration of 0.5, 1, 1.5 wt%, but decreased at 2 wt% compared to 1.5 wt%. Conclusion. When 1.5 wt% of titanium dioxide nanoparticles were added to the 3D-printed denture base resin with polishing, antifungal properties were increased.

Evaluation of Microhardness of Bulk-base Composite Resins According to the Depth of Cure (Bulk-base 복합 레진의 중합 깊이에 따른 미세경도 평가)

  • No, Yoomi;Shin, Bisol;Kim, Jongsoo;Yoo, Seunghoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.3
    • /
    • pp.335-340
    • /
    • 2017
  • Composite resin becomes an essential material in pediatric dentistry. However, incremental filling of composite resin to minimize the polymerization shrinkage takes time. To reduce the polymerization shrinkage, clinicians and researchers have focused on bulk-filling materials. Bulk-base composite resin is newly introduced as bulk-filling composite resin. The purpose of this study was to evaluate microhardness profile of bulk-base composite resin according to the depth of cure. A high flow bulk-base material and a low flow bulk-base material were used for experimental group, and a conventional composite resin was used for control group. Each group consist of 20 specimens, $3.5{\times}3.5{\times}5.0mm$ mold was used to make specimen. Specimens were sectioned at the 2 mm and the 3 mm depth with milling machine. Microhardness profile was measured at the surface, 2 mm depth, 3 mm depth, and 4 mm depth. Microhardness of control group showed statistically significant difference (p < 0.05) according to the polymerization depth. In contrast, experimental group showed no statistically significant difference, except between 0 mm and 4 mm at HFB, 0 mm and 2 mm, 0 mm and 3 mm at MFB. At the surface and the 2 mm depth, the control group showed higher microhardness than the experimental groups (p < 0.05). However, at the 4 mm depth, the experimental groups showed significantly higher microhardness (p < 0.05). The results from this study, the bulk-base composite resin showed higher microhardness at the 4 mm and lower microhardness at the surface and the 2 mm depth. Therefore, if bulk-base resin overcomes the mechanical weakness, it could be considered using in pediatric dentistry.