• Title/Summary/Keyword: 적층코어

Search Result 62, Processing Time 0.086 seconds

Convergence Study of Motorsports and Technology : Strength Analysis for the Design of CFRP Bucket Seat (모터스포츠와 기술 융합 연구 : CFRP 버킷 시트 설계를 위한 구조강도 해석)

  • Jang, Woongeun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.165-171
    • /
    • 2019
  • Engineering and Technology have been influencing a lot in the field of sports. Competitiveness, attributes of sports, have forced not only sports players but sports goods to enhance those performance. Particularly in the field of motorsports, the convergence of sports and technology has long been done to satisfy between performance and safety. In this study, strength analysis was carried with FEM to develop CFRP Laminate(Carbon Fiber Reinforced Plastic Laminate) bucket seat targeted to motorsports and car tuning industries and FIA($F\acute{e}d\acute{e}ration$ Internationale de l'Automobile) regulation was applied to design the racing seat and evaluate its strength. FEM modeling considered the attributes of composites was followed by strength evaluation based on Tsai-Wu failure index were done according to Lay-up sequence and layer numbers. The result showed that the lay-up sequence with stacking angle such as $[0^{\circ}/30^{\circ}/60^{\circ}/90^{\circ}/-30^{\circ}/-60^{\circ}]_4$ with 3mm form core was optimal selection in the field of weight and strength evaluation.

Analysis of side-polished fiber couplers with an intermediate-coupling layer and improvement of their coupling efficiency (중간 결합층이 적층된 측면연마 광섬유 결합기의 해석 및 결합효율 개선)

  • 손경락;김광택
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • An in-line fiber coupler, based on side-polished single-mode fibers covered with an intermediate coupling layer and a planar waveguide, is analyzed by modeling the interaction region as an equivalent multi-layered planar waveguide. The reflectance for the multi-layered structure with and without buffer layer is illustrated as a function of the refractive index and thickness of the overlay waveguides. When the refractive index of the overlay waveguides is greater than that of the fiber core, the conditions for the intermediate coupling layer to increase the power coupling from the fiber to the overlays is also explained. Through the experimental results using a LiNbO$_3$planar waveguide, we show that the theoretical analysis is reasonable and in good agreement with the measured values.

Study on Impact Damage Behavior of Sandwich Composite Structure for aircraft (항공기 적용 샌드위치 복합재 구조의 충격 손상 거동 연구)

  • Park, Hyunbum;Kong, Changduk
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this study, low velocity impact analysis on composite sandwich structure was performed. Sandwich structure configuration is made of Carbon-Epoxy face sheets and foam cores. For validating study, the results of an experimental and a finite element method analysis were compared previously. From the finite element method analysis results of sandwich panel, it was confirmed that the results of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using finite element method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity. Finally, The comparison of the numerical results with those measured by the experiment showed good agreement.

The Weldability of Laminated Stator Core for Motor by Pulsed Nd:YAG Laser [II] - Investigation of Mechanism on Formation of Weld Defect - (펄스 Nd:YAG 레이저를 이용한 모터용 스테이터 적층코어의 용접특성 [II] - 용접결함의 형성 메커니즘 규명 -)

  • Kim Jong-Do;Kil Byung-Lea;Lee Chang-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.636-644
    • /
    • 2006
  • Recently, there were some successful examples that the laser welding was introduced into production line. However, the spread of laser welding is not sufficient in many industries. There are several reasons why it is difficult to penetrate the laser welding into production lines. Because it is different from reflection, absorption and permeation of laser beam according to material and surface condition. Moreover, there are significant problems in processing such as absorption and scattering of beam by the induced plasma or plume. Therefore, understanding of mechanism on formation of weld defect in laser welding of the laminated core for motor is very important. In this paper, it was analyzed in terms of materials which was source of defect in laser welding and conventional arc welding. As a results of analysis, insulation coating film of the laminated core was judged to main factor of weld defect. it could be well aware as tracing carbon volume, and it was deduced that weld defect by insulation coating film was caused by difference of mechanism between the two heat sources.

Acoustic Emission Characteristics and Fracture Behaviors of GFRP-Aluminum Honeycomb Hybrid Laminates under Compressive and Bending Loads (GFRP-알루미늄 하니컴 하이브리드 적층판의 압축 및 굽힘 파괴거동과 음향방출해석)

  • Lee, Ki-Ho;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.23-31
    • /
    • 2009
  • This paper investigated acoustic emission (AE) characteristics in association with various fracture processes of glass fiber reinforced plastic skin/ aluminum honeycomb core (GF-AH) hybrid composites under compressive and bending loads. Various failure modes such as skin layer fracture, skin/core interfacial fracture, and local plastic yield buckling and cell wall adhesive fracture occurring in the honeycomb cell wall were classified through the fracture identification in association with the AE frequency and amplitude analysis. The distribution of the event-rate in which it has a high amplitude showed a procedure of cell wall adhesive fracture, skin/core interfacial debonding and fiber breakage, whereas distribution of different peak frequencies indicated the plastic deformation of aluminum cell wall and the friction between honeycomb walls. Consequently, the fracture behaviors of GF-AH hybrid composites could be characterized through a nondestructive evaluation employing the AE technique.

A Study on the Standardized Finite Element Models for Carbody Structures of Railway Vehicle Made of Sandwich Composites (샌드위치 복합재 적용 철도차량 차체 구조물의 표준유한요소모델 제시 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Ko, Hee-Young;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • This paper describes the standardized finite element model for carbody structures of railway vehicle made of sandwich composites. Recently, sandwich composites were widely used to railway vehicle due to the improvement of energy efficiency, high specific stiffness and strength, weight reduction and space saving in korea. Therefore, structural integrity should be verified using finite element analysis prior to the manufacture of composite railway vehicle. The standardized finite element model for composite carbody structures was introduced through comparing the results of real structural test under vertical, compressive, twisting load and natural frequency test of various railway vehicles in this study. The results show that the quadratic shell element is suitable to model the reinforced metal frame used to improve the flexural stiffness of sandwich panel compared to beam element, and layered shell and solid element are recommended to model the skin and honeycomb core of sandwich panel compared to sandwich shell element. Also, the proposed standard finite element model has the merit of being applied to crashworthiness problem without modifications of finite element model.

Modeling of Cooling Channels of Injection Mould using Functionally Graded Material (기능성 경사 복합재를 이용한 사출금형의 냉각회로 모델링)

  • Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1647-1653
    • /
    • 2011
  • The cycle time in injection moulding greatly depends on the cooling time of the plastic part that is controlled by cooling channels. Cooling channels are required to facilitate the heat transfer rate from the die to the coolant without reducing the strength of the die. Employing layered manufacturing techniques (LMT), a die embedding conformal cooling channels can be fabricated directly while conventional cooling channels are usually made of straight drilled hole. Meanwhile, H13 tool steel is widely used as the die material because of its high thermal resistance and dimensional stability. However, H13 with a low thermal conductivity is not efficient for certain part geometries. In this context, the use of functionally graded materials (FGMs) between H13 and copper may circumvent a tradeoff between the strength and the heat transfer rate. This paper presents a method for modeling of conformal cooling channels made of FGMs.

Experimental Study on Mixed-Model Production of Stator and Rotor using Motor Core Laminated Stamping Die Technology for Attaching and Detaching Cam (Cam 착탈 방식의 모터코어 적층금형 기술을 적용한 Stator와 Rotor의 다종 혼류 생산에 대한 연구)

  • Park, D.H.;Hwang, P.J.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.240-245
    • /
    • 2017
  • Mixed-model production technology is a method of producing multiple products with one production process and production line in order to reduce wasted manpower and adjust to market trends. In other words, mixed-model production is a flexible production system that changes production volume by model according to market demand. This study has developed a progressive laminated stamping die technology to enable flexible production of a motor core consisting of attaching and detaching the Cam on the back of the punch so that two kinds of stator and two kinds of rotor could be produced in one progressive die.

Dynamic Characteristics of Laminated Rotor Core of Electric Motor Products (생산 전동기 로터 적층 코어의 동특성 조사)

  • Kim, Kwan-Young;Moon, Byung-Yun;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.275-278
    • /
    • 2005
  • The dynamic characteristics of rotor shafts for electric motors were investigated through the modal tests. The natural frequencies and modal dampings in each manufacturing stage of rotor core assembly were analyzed from the frequency response functions fer all 6 motors of a product model. The deviation of the each individual modal feature was found dependent on the mode shapes as well as the rotor assembly stage. The core stacking itself is known to widen the deviation of modal properties but fellowing processes of rotor bar insertion and swaging are confirmed to reduce the deviation. Finally the equivalent diameter of core part was estimated from the comparison of measured and calculated results to include the stiffness of core part.

  • PDF

Preliminary Comparison of Deep-sea Sedimentation in the Ulleung and Shikoku Basins: Deep-sea Circulations and Bottom Current (울릉분지와 시코쿠분지 심해퇴적작용의 비교에 관한 기초연구: 심층수순환과 저층류)

  • Chun, Seung-Soo;Lee, In-Tae
    • Journal of the Korean earth science society
    • /
    • v.23 no.3
    • /
    • pp.259-269
    • /
    • 2002
  • Based on sedimentary structures, degree of bioturbation, and internal erosional layers, the deep-sea core sediments in the East Sea (Ulleung and Yamato basins) and the Northwestern Pacific Ocean (Shikoku Basin) can be divided into two parts (upper and lower) with the boundary of around 10,000 years B.P. in age. The upper part of core KT94-10 from Shikoku Basin is characterized by low sedimentation rate, internal erosion layer, high degree of bioturbation and cross-lamination structures. It can be interpreted as the bottom-current deposits which show some different characteristics from turbidite or hemipelagic sediment. However, its lower part consists of highly bioturbated, massive mud, suggesting that it be not related to the influence of bottom current. On the other hand, the cores in Ulleung and Yamato basins do not show any evidence of bottom-current deposits: their upper parts consist of bioturbated mud, and lower parts are characterized by laminated mud with pyrite filaments, indicating anaerobic condition. Consequently, these sedimentological characteristics suggest that deep-sea circulation would be changed from slow-moving to fast-moving one at this bounding time commonly in the Northwestern Pacific Ocean and the East Sea. Also, even in the same time, the deep-sea circulation in the Northwestern Pacific area would be relatively faster than that in the East Sea.