• Title/Summary/Keyword: 적층성

Search Result 1,120, Processing Time 0.033 seconds

Viscoelastic Bending, Vibration and Buckling Analysis of Laminated Composite Plates on Two-parameter Elastic Foundation (2개 매개변수를 갖는 탄성지반위에 놓인 복합재료 적층판의 점탄성적 휨, 진동 좌굴해석)

  • Han, SungCheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.443-455
    • /
    • 2001
  • An energy method has been used for an elastic formulation of bending vibration and buckling analysis of laminated composite plates on two-parameter elastic foundations. A quasi-elastic method is used for the solution of viscoelastic analysis of the laminated composite plates. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported orthotropic plates on elastic foundations are compared with those of LUSAS program Numerical results of the viscoelastic bending vibration and buckling analysis are presented to show the effects of layup sequence number of layers material anisotropy and shear modulus of foundations.

  • PDF

Fabrication of SMD Type PTC Thermistor with Multilayer Structure

  • Kim, Yong-Hyuk;Lee, Duck-Cuool
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • PTC thermistors with multilayer structure were fabricated by internal electrode bonding technique in order to realize low resistance. MLPTC (Multilayer Positive Temperature Coefficient) possess various features, such as small size, low resistivity and large current. We describe the effect of additives on the PTC characteristics, voltage - current characteristics, temperature dependence of resistance and complex impedance spectra as a function of frequency range 100 Hz to 13MHz to determine grain boundary resistance. It was found that MLPTC thermistor has both highly nonlinear effects of temperature dependent resistance and voltage dependent current behaviors, which act as passive element with self-repair mechanisms. Decrease of room temperature resistance with increasing the number of layers was demonstrated to be a grain boundary effect. Switching characteristics of current were caused by heat capacity of PTC thermistor with multilayer structure. Switching times are lengthened by increasing the number of layers.

  • PDF

Application of Spectral Element Method for the Vibration Analysis of Passive Constrained Layer Damping Beams (수동감쇠 적층보의 진동해석을 위한 스펙트럴요소법의 적용)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This paper introduces a spectrally formulated element method (SEM) for the beams treated with passive constrained layer damping (PCLD). The viscoelastic core of the beams has a complex modulus that varies with frequency. The SEM is formulated in the frequency domain using dynamic shape functions based on the exact displacement solutions from progressive wave methods, which implicitly account for the frequency-dependent complex modulus of the viscoelastic core. The frequency response function and dynamic responses obtained by the SEM and the conventional finite element method (CFEM) are compared to evaluate the validity and accuracy of the present spectral PCLD beam element model. The spectral PCLD beam element model is found to provide very reliable results when compared with the conventional finite element model.

Comparative evaluation of the subtractive and additive manufacturing on the color stability of fixed provisional prosthesis materials (고정성 임시 보철물 재료의 색 안정성에 대한 절삭 및 적층가공법의 비교평가)

  • Lee, Young-Ji;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.2
    • /
    • pp.73-80
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the color stability of provisional restorative materials fabricated by subtractive and additive manufacturing. Materials and Methods: PMMA specimens by subtractive manufacturing and conventional method and bis-acryl specimens by additive manufacturing were fabricated each 20. After immersing specimens in the coffee solution and the wine solution, the color was measured as CIE Lab with a colorimeter weekly for 4 weeks. Color change was calculated and data were analyzed with one-way ANOVA and the Tukey multiple comparisons test (α = 0.05). Results: PMMA provisional prosthetic materials by subtractive manufacturing showed superior color stability compared to bis-acryl provisional prosthetic materials by additive manufacturing (P < 0.05), and showed similar color stability to the PMMA provisional prosthetic materials by conventional method (P > 0.05). Conclusion: It is recommended to fabricate provisional restorations by subtractive manufacturing in areas where esthetics is important, such as anterior teeth, and consideration of the color stability will be required when making provisional prosthetic using additive manufacturing.

Stacking Sequence Design of Fiber-Metal Laminate Composites for Maximum Strength (강도를 고려한 섬유-금속 적층 복합재료의 최적설계)

  • 남현욱;박지훈;황운봉;김광수;한경섭
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.42-54
    • /
    • 1999
  • FMLC(Fiber-Metal Laminate Composites) is a new structural material combining thin metal laminate with adhesive fiber prepreg, it nearly include all the advantage of metallic materials, for example: good plasticity, impact resistance, processibility, light weight and excellent fatigue properties. This research studied the optimum design of the FMLC subject to various loading conditions using genetic algorithm. The finite element method based on the shear deformation theory was used for the analysis of FMLC. Tasi-Hill failure criterion and Miser yield criterion were taken as fitness functions of the fiber prepreg and the metal laminate, respectively. The design variables were fiber orientation angles. In genetic algorithm, the tournament selection and the uniform crossover method were used. The elitist model was also used to be effective evolution strategy and the creeping random search method was adopted in order to approach a solution with high accuracy. Optimization results were given for various loading conditions and compared with CFRP(Carbon Fiber Reinforced Plastic). The results show that the FMLC is more excellent than the CFRP in point and uniform loading conditions and it is more stable to unexpected loading because the deviation of failure index is smaller than that of CFRP.

  • PDF

Architectural Product and Formwork Manufacture using 3D Printing - Applicability Verification Through Manufacturing Factor Prediction and Experimentation - (3D 프린팅을 통한 거푸집 제조 및 건축 상품 구현 - 제조인자예측과 실험을 통한 적용가능성 검증 -)

  • Park, Jinsu;Kim, kyung taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.113-117
    • /
    • 2022
  • Additive manufacturing (AM, also known as 3D printing) technology is digitalized technology, making it easy to predict and manage quality and also, have design freedom ability. With these advantages, AM technology is applied to various industries. In particular, a method of manufacturing buildings and infrastructure with AM technology is being proposed to the construction industry. However, the application of AM technology is restricted due to problems such as insufficient history and quality of technology, lack of construction management methods, and certification of manufacturing products. Therefore, the manufacture of architectural products is implemented with indirect AM technology. In particular, it manufactures formwork using AM and injecting building materials to implement the architectural product. In this study, hybrid type material extrusion AM is used to manufacture large-sized formwork and implement building products. Moreover, we identify factors that can predict productivity and economic feasibility in the additive manufacturing process. As a result, design optimization results are proposed to reduce the production cost and time of architecture buildings.

Study on Fastened Properties by Applied to CFRP Laminates of Subminiature Screw (초소형나사의 CFRP 적층판 적용에 따른 체결특성에 관한 연구)

  • Choi, Byung Hui;Kim, Ho Joong;Kim, Ji Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1239-1243
    • /
    • 2014
  • This paper presents the application of carbon-fiber-reinforced polymer (CFRP) for the damage absorption and optimal design of portable smart devices to close in life. CFRP specimens are subjected to a tensile test to estimate their mechanical properties in terms of the stacking angles. Further, the screw reverse torque and screw torque at each stacking angle are determined using a torque tester after tapping holes on the CFRP specimens. Two experiments are performed for comparing their results in order to determine optimal conditions. In the tensile test, a woven specimen is found to have the highest strength and stiffness. In the case of the woven specimen, no difference is observed even when it is applied to prevent loosening of the coating. And average result value was excellent.

Seismic Retrofit Effect for Column of Subway Tunnel Reinforced by FRP-Ductile Material Layered Composites (FRP-연성재 적층복합체로 보강된 도시철도 개착식 터널 기둥의 내진보강효과)

  • Kim, Doo-Kie;Go, Sung-Hyuk;Kim, Jin-Yeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.85-92
    • /
    • 2010
  • Recently the earthquake occurrences in Korea are likely to increase. Therefore, the facilities such as bridges and tunnels under the unexpected earthquakes need to be enhanced. Especially most of the subways previously built before 1988 have not been seismically designed, so their seismic safety requirements are required to be inspected and/or reinforced. In this study, the seismic reinforcement using FRP-ductile material layered composites was proposed to reinforce for the subway columns. Material properties of FRP-ductile material layered composites were calculated by laboratory tests considering the laminated conditions of the composites. Numerical simulations were performed using the experimental results of the specimens and the calculated properties of the composites. Seismic performance varied according to the types of composites: ductile material, number of layers, fiber orientations.

Reviewing the Applicability of 3D Printing Technology in the Construction Industry (3D 프린팅 기술의 건설 산업 적용가능성 검토)

  • Park, Jinsu;Kim, kyungtaek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.119-124
    • /
    • 2022
  • Recently a method of constructing architectural products using additive manufacturing technology has been proposed. The additive manufacturing technology automates the construction process and it can secure the safety of workers. In addition, due to the high implementation efficiency of atypical shapes, the applicability to the manufacturing process of buildings and infrastructure is drawing attention. Additive manufacturing technology has the ability of satisfying computer-based construction automation, resource management and construction period prediction which is required in the modern construction industry. However, the industrial application is still limited by insufficient data, standards, regulations, and operating methods. In this study, in order to analyze the applicability of architectural additive manufacturing technology, we manufacture each architectural product with two additive manufacturing systems. In addition, we apply an application of each building product into an appropriate manufacturing system through the AM production decision model. And identify problems in the manufacturing process through empirical experiments. As a result, we propose an extended additive production decision model to improve the quality of building products.

BS/channeling studies on the heteroepitaxially grown $Y_2O_3$ films on Si substrates by UHV-ICB deposition (실리콘 기판 위에 UHV-ICB 증착법으로 적층 성장된 $Y_2O_3$박막의 BS/channeling 연구)

  • 김효배;조만호;황보상우;최성창;최원국;오정아;송종한;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.235-241
    • /
    • 1997
  • The crystallinity and the structure of heteroepitaxially grown $Y_2O_3$ films on the silicon substrates deposited by Ultra High Vacuum Ionized Cluster Beam(UHV-ICB) were investigated by Back-scattering Spectroscopy(BS)/channeling. The channeling minimum values, $X_{min}$, of the $Y_2O_3$ films deposited by other methods were 0.8~0.95 up to the present, which indicates amorphous or highly polycrystalline nature of the $Y_2O_3$ films. On the contrary, the channeling minimum value of heteroepitaxially grown $Y_2O_3$ films on Si(100) and Si(111) deposited by UHV-ICB are 0.28 and 0.25 respectively. These results point out fairly good crystalline quality. It is also observed that the top region of $Y_2O_3$ films have less crystalline defects than the bottom region regardless of the crystal direction of the Si substrates. The axis of $Y_2O_3$<111> epitaxially grown on Si(111) is tilt by $0.1^{\circ}$ with respect to Si<111>. That of $Y_2O_3$<110> on Si(100) is parallel to the Si<001>. The $Y_2O_3$ film on Si(100) grew with single domain structure and that on Si(111) grew with double domain structure. From the result of oxygen resonance BS/channeling, the oxygen atoms in heteroepitaxially grown $Y_2O_3$ film on Si(111) substrate have the crystallinity, but that on Si(100) shows almost channeling amorphous state.

  • PDF