• Title/Summary/Keyword: 적재 및 하적

Search Result 2, Processing Time 0.019 seconds

A Study on Stowage Automation Algorithm for Cargo Stowage Optimization of Vehicle Carriers (차량 운반선의 화물 적재 최적화를 위한 적재 자동화 알고리즘 연구)

  • JI Yeon Kim;Young-Jin Kang;Jeong, Seok Chan;Hoon Lee
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.129-137
    • /
    • 2022
  • With the development of the 4th industry, the logistics industry is evolving into a smart logistics system. However, ship work that transports vehicles is progressing slowly due to various problems. In this paper, we propose an stowage automation algorithm that can be used for cargo loading of vehicle carriers that shortens loading and unloading work time. The stowage automation algorithm returns the shortest distance by searching for a loading space and a movable path in the ship in consideration of the structure of the ship. The algorithm identifies walls, ramps and vehicles that have already been shipped, and can work even with randomly placed. In particular, it is expected to contribute to developing a smart logistics system for vehicle carriers by referring to the ship's master plan to search for vehicle loading and unloading space in each port and predict the shortest movable path.

Structural Modeling and Characteristic Analysis of Container Handling System (컨테이너 적재 시스템의 구조 모델링 및 특성 해석)

  • Kim, Young-Sang;Maeng, Hee-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.458-463
    • /
    • 2011
  • A CHS(Container Handling System) is a system to load and to unload ISO 2000 or ISO 4000 standard containers which is widely used for various industrial transport purpose. A new light type of CHS is introduced in this paper, in order to reduce weight of cargos and to give the convenience in cargo loading and unloading without additional lifting equipments. The structural models of this system are created to assemble the smooth integration of system and to interface the each composing units with the specification of truck chassis to be mounted. These models are applied to find the suitable design parameters under the condition of force restrictions of each units. Finally, the stability of this system are investigated by analyzing the dynamic simulation using Visual NASTRAN 4D, and it could be recommend the good design parameters for the manufacturing purpose.