• Title/Summary/Keyword: 적응 훈련 신경망

Search Result 15, Processing Time 0.033 seconds

A Study on the prosody generation of artificial neural networks (인공신경망의 운률 발생에 관한 연구)

  • 신동엽;민경중;강찬구;임운천
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.87-90
    • /
    • 2000
  • 문-음성 합성기의 자연감을 높이기 위해 주로 자연음에 존재하는 운률 법칙을 정확히 구현해 주어야 한다. 일반적으로 언어학적 정보를 이용하거나 자연음으로부터 추출한 운률 정보를 추출한 운률 법칙을 합성에 이용하고 있다. 이와 같이 구한 운률 법칙이 자연음에 존재하는 모든 운률 법칙을 포함할 수 있으면, 자연스러운 합성음을 들을 수 있겠으나, 실질적으로는 모든 법칙을 구현한다는 것은 어려운 실정이고, 자연음으로부터 추출한 운률 법칙이 잘못 구현되는 경우 합성음의 자연성이 떨어지는 것을 피할 수 없을 것이다. 이런 점을 고려하여 우리는 자연음에 내재하는 운율 법칙을 훈련을 통해 학습할 수 있는 인공 신경망을 제안하였다 운률의 세 가지 요소는 피치, 지속시간, 크기 변화가 있는데, 인공 신경망은 문장이 입력되면, 각 해당 음소의 지속시간에 따른 피치 변화와 크기 변화를 학습할 수 있도록 설계하였다. 신경망을 훈련시키기 위해 고립 단어군과 음소균형 문장군을 화자로 하여금 발성하게 하여, 녹음하고, 분석하여 운률 데이터베이스를 구축하였다. 자연음의 각 음소에 대해 지속시간과 피치변화 그리고 크기 변화를 구하여 곡선 적응 방법을 이용하여 각 변화 곡선에 대한 계수를 구해 데이터베이스를 구축한다. 이렇게 구축한 데이터베이스를 이용해 인공 신경망을 훈련시켜 평가한 결과 훈련용 데이터를 계속 확장하면 좀 더 자연스러운 운률을 발생시킬 수 있음을 관찰하였다.

  • PDF

A Study on the Artificial Neural Networks for the Sentence-level Prosody Generation (문장단위 운율발생용 인공신경망에 관한 연구)

  • 신동엽;민경중;강찬구;임운천
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.53-56
    • /
    • 2000
  • 무제한 어휘 음성합성 시스템의 문-음성 합성기는 합성음의 자연감을 높이기 위해 여러 가지 방법을 사용하게되는데 그중 하나가 자연음에 내재하는 운을 법칙을 정확히 구현하는 것이다. 합성에 필요한 운율법칙은 언어학적 정보를 이용해 구현하거나, 자연음을 분석해 구한 운을 정보로부터 운율 법칙을 추출하여 합성에 이용하고 있다. 이와 같이 구한 운을 법칙이 자연음에 존재하는 운율 법칙을 전부 반영하지 못했거나, 잘못 구현되는 경우에는 합성음의 자연성이 떨어지게 된다. 이런 점을 고려하여 우리는 자연음의 운율 정보를 이용해 인공 신경망을 훈련시켜, 문장단위 운율을 발생시킬 수 있는 방식을 제안하였다. 운율의 세 가지 요소는 피치, 지속시간, 크기 변화가 있는데, 인공 신경망은 문장이 입력되면, 각 해당 음소의 지속시간에 따른 피치 변화와 크기 변화를 학습할 수 있도록 설계하였다. 신경망을 훈련시키기 위해 고립 단어 군과 음소균형 문장 군을 화자로 하여금 발성하게 하여, 녹음하고, 분석하여 구한 운을 정보를 데이터베이스로 구축하였다. 문장 내의 각 음소에 대해 지속시간과 피치 변화 그리고 크기 변화를 구하고, 곡선적응 방법을 이용하여 각 변화 곡선에 대한 다항식 계수와 초기치를 구해 운을 데이터베이스를 구축한다. 이 운을 데이터베이스의 일부를 인공 신경망을 훈련시키는데 이용하고, 나머지를 이용해 인공 신경망의 성능을 평가한 결과 운을 데이터베이스를 계속 확장하면 좀더 자연스러운 운율을 발생시킬 수 있음을 관찰하였다.

  • PDF

Online object tracking via convolutional neural network (합성곱 신경망을 통한 온라인 객체 추적)

  • Gil, Jong in;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.11-12
    • /
    • 2017
  • 본 논문에서는 부류가 정해진 훈련 집합이 불필요한 온라인 학습 기반 추적 기법을 제안한다. 추적기의 학습을 위해 합성곱 신경망(convolutional neural network: CNN)을 이용하였다. 추적영상으로부터 직접 훈련 샘플을 수집함으로써 분류기 학습을 위한 비용을 감소시킬 수 있었고, 목표 영상에 적응적인 객체 모델을 생성할 수 있다. 실험 결과를 통해 제안하는 방법이 우수한 성능을 보임을 입증하였다.

  • PDF

Learning of Artificial Neural Networks about the Prosody of Korean Sentences. (인공 신경망의 한국어 운율 학습)

  • Shin Dong-Yup;Min Kyung-Joong;Lim Un-Cheon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.121-124
    • /
    • 2001
  • 음성 합성기의 합성음의 자연감을 높이기 위해 자연음에 내재하는 정확한 운율 법칙을 구하여 음성합성 시스템에서 이를 구현해 주어야 한다 무제한 어휘 음성합성 시스템의 문-음성 합성기에서 필요한 운율 법칙은 언어학적 정보를 이용해 구하거나, 자연음에서 추출하고 있다 그러나 추출한 운율 법칙이 자연음에 내재하는 모든 운율 법칙을 반영하지 못했거나, 잘못 구현되는 경우에는 합성음의 자연성이 떨어지게 된다. 이런 점을 고려하여 본 논문에서는 한국어 자연음을 분석하여 추출한 운율 정보를 인공 신경망이 학습하도록 하고 훈련을 마친 인공 신경망에 문장을 입력하고, 출력으로 나오는 운율 정보와 자연음의 운율 정보를 비교한 결과 제안한 인공 신경망이 자연음에 내재하고 있는 운율을 학습할 수 있음을 알 수 있었다. 운율의 3대 요소는 피치 , 지속시간, 크기의 변화이다. 제안한 인공 신경망이 한국어 문장의 음소 열을 입력으로 받아들이고, 각 음소의 지속시간에 따른 피치변화와 크기 변화를 출력으로 내보내면 자연음을 분석해 구한 각 음소의 운율 정보인 목표 패턴과 출력 패턴 의 오차를 최소화하도록 인공 신경망의 가중치를 조절할 수 있도록 설계하였다. 지속시간에 따른 각 음소의 피치와 크기 변화를 학습시키기 위해 피치 및 크기 인공 신경망을 구성하였다. 이들 인공 신경망을 훈련시키기 위해 먼저 음소 균형 문장 군을 구축하여야 하고, 이들 언어 자료를 특정 화자가 일정 환경에서 읽고 이를 녹음하여 , 분석하여 구한운율 정보를 운율 데이터베이스로 구축하였다. 문장 내의 각 음소에 대해 지속 시간과 피치 변화 그리고 크기 변화를 구하고, 곡선 적응 방법을 이용하여 각 변화 곡선에 대한 다항식 계수와 초기 값을 구해 운율 데이터베이스를 구축한다. 이 운율 데이터베이스의 일부는 인공 신경망을 훈련시키는데 이용하고, 나머지로 인공 신경망의 성능을 평가하여 인공 신경망이 운율 법칙을 학습할 수 있었다. 언어 자료의 문장 수를 늘리고 발음 횟수를 늘려 운율 데이터베이스를 확장하면 인공 신경망의 성능을 높일 수 있고, 문장 내의 음소의 수를 감안하여 인공 신경망의 입력 단자의 수는 계산량과 초분절 요인을 감안하여 결정해야 할 것이다

  • PDF

Development of Process Analysis and Prediction Systeme to Improve Yield in Plasma Etching Process Using Adaptively Trained Neural Network (적응 훈련 신경망을 이용한 플라즈마 식각 공정 수율 향상을 위한 공정 분석 및예측 시스템 개발)

  • Choi, Mun-Kyu;Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.98-105
    • /
    • 1999
  • As the IC(Integrated Circuit) has been densified and complicated, it is required to thorough process control to improve yield. Experts, for this purpose, focused on the process analysis automation, which is came from the strict data management in semiconductor manufacturing. In this paper, we presents the process analysis system that can analyze causes, for a output after processes. Also, the plasma etching process that highly affects yield among semiconductor process is modeled to predict a output before the process. To approach this problem, we use adaptively trained neural networks that exhibit superior accuracy over statistical techniques. And in comparison with methods in other paper, a method that history of trend for input data is considered is shown to offer advantage in both learning and prediction capability. This research regards CD(Critical Dimension) that is considerable in high integrated circuit as output variable of the prediction model.

  • PDF

A Self Organization of Wavelet Network Structure by Generation and Extinction of Hidden Nodes (은닉노드의 생성 ${\cdot}$ 소멸에 의한 웨이블릿 신경망 구조의 자기 조직화)

  • Lim, Sung-Kil;Lee, Hyon-Soo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.78-89
    • /
    • 1999
  • Previous wavelet network structures are determined by considering the relationship between wavelet windows distribution of training patterns that are transformed into time-frequency space. Because it is separated two algorithms that determines wavelet network structure and that modifies parameters of network, learning process that minimizes output error of network is executed after the network structure is determined. But this method has some weakness that training patterns must be transformed into time-frequency space by additional preprocessing and the network structure should be fixed during learning process. In this paper, we propose a new constructing method for wavelet network structure by using differences between the output and the desired response without preprocessing. Because the algorithm perform network construction and error minimizing process simultaneously, it can determine the number of hidden nodes adaptively as with the complexity of problems. In addition, the network structure is optimized by inserting new hidden nodes in the area that has maximum error and extracting hidden nodes that has no effect to the output of network. This algorithm has no constraint condition that all training patterns must be known, because it removes preprocessing procedure for training patterns and it can be applied effectively to systems that has time varying outputs.

  • PDF

Development of Forecasting Model for the Initial Sale of Apartment Using Data Mining: The Case of Unsold Apartment Complex in Wirye New Town (데이터 마이닝을 이용한 아파트 초기계약 예측모형 개발: 위례 신도시 미분양 아파트 단지를 사례로)

  • Kim, Ji Young;Lee, Sang-Kyeong
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.217-229
    • /
    • 2018
  • This paper aims at applying the data mining such as decision tree, neural network, and logistic regression to an unsold apartment complex in Wirye new town and developing the model forecasting the result of initial sale contract by house unit. Raw data are divided into training data and test data. The order of predictability in training data is neural network, decision tree, and logistic regression. On the contrary, the results of test data show that logistic regression is the best model. This means that logistic regression has more data adaptability than neural network which is developed as the model optimized for training data. Determinants of initial sale are the location of floor, direction, the location of unit, the proximity of electricity and generator room, subscriber's residential region and the type of subscription. This suggests that using two models together is more effective in exploring determinants of initial sales. This paper contributes to the development of convergence field by expanding the scope of data mining.

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.

Study on Water Stage Prediction by Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1159-1163
    • /
    • 2010
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 수위자료로부터 단시간 수위예측에 관해 연구하였다. 신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 하천수위를 과거의 자료로 부터 학습된 신경망의 수학적 알고리즘을 통해 유출량의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 따라서 본 연구에서는 인공신경망의 가중치를 유전자 알고리즘에 의해 최적화시킨후 오류역전파알고리즘에 의해 신경망의 학습을 진행하는 모형으로 감천유역의 선산수위표지점의 수위를 1시간~6시간까지 예측하였다.

  • PDF

Knee Joint Control of Transfemoral Prosthesis based on the EMG Signal (근전도 신호를 기반한 대퇴의족의 슬관절 제어)

  • 이주원;이건기;이상민;장두봉;이병로
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.281-284
    • /
    • 2002
  • 대부분의 보조기 및 의족은 기계식이 주류이며 환자가 착용시 정상보행은 부드럽지 못하고 원활한 보행을 위해서는 장기간 동안 훈련이 요구된다. 따라서 대퇴의족에서 발생하는 이러한 문제점을 개선하기 위해 본 연구에서는 대퇴절단자(transfermoral amputee)의 보행을 정상보행에 일치하는 보행 능력을 복원하기 위해 근전도 신호와 인공신경망을 이용하여 적응 PID제어기를 설계하였고 그 제어 결과를 제시하였다.

  • PDF