• Title/Summary/Keyword: 적응 학습

Search Result 1,173, Processing Time 0.026 seconds

Adaptive Multilayered Student Modeling using Agent (Agent 기반 적응적 다중 학습자 모델링)

  • 이성곤;유영동
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.263-268
    • /
    • 1999
  • 지능형 교육 시스템에서 학습자 모델은 학습자의 반응을 토대로 교수모듈과 전문가 모듈을 연계하여 새로운 학습자 모델을 제시하는 역할을 수행하고 있으며, 이는 성공적인 지능형 교육 시스템의 구현에 있어서 핵심적인 부분이다. 따라서 많은 대학교 및 연구소에서 그동안 학습자 모형에 관한 많은 연구가 이루어져오고 있다. 그러나 대부분의 연구는 단일 학습자 모형을 기반으로 두고 있으며, 이러한 단일 학습자 모형을 이용한 시스템들은 학습자의 지식 또는 학습자의 성향을 정확히 파악하기는 어려움을 갖고 있을 뿐만 아니라 다른 모듈과의 인터페이스 부분에서 중복된 많은 정보를 가지고 있다. 따라서 본 논문에서는 학습자의 지식을 정확하게 진단하고 각 모듈간의 중복된 정보를 보완할 수 있는 다중 학습자 모형을 개발하여 구현하였다. 또한 이러한 다중 학습자 모형을 최적으로 수행할 수 있도록 하기위하여 agent기법을 적용하였다. Agent를 이용한 다중 학습자 모형을 적용하여 구현한 시스템은 첫째, 단계적인 접근 방법으로 보다 정확한 학습자의 지식 진단이 가능하다. 둘째, 학습과정중 학습자의 심리 상태 및 학습자의 선호도 등 파악이 용이하다. 셋째, 교수모듈과 전문가 모듈과의 연계에 있어서 정보의 중복됨의 최소화 등의 장점을 제공한다.

  • PDF

Development of a Adaptive Knowledge Base Object Model for Intelligent Tutoring System (지능형 교육 시스템을 위한 적응적 지식베이스 객체 모형 개발)

  • Kim Yong-Beom;Kim Yung-Sik
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.421-428
    • /
    • 2006
  • Intelligent Tutoring System(ITS), which offers individualized learning environment that consider many learners' variable, is realized by the effective alternative to take the place of domain expert. Accordingly, research on Learning Companion System(LC) is currently noticing. However, to develop LCS which applies effective interaction, it is necessary to combine several LCs, and personalized knowledge base have to be made first. Therefore, in this paper, we propose the 'Knowledge Base Object Medel', which is based on connectionist' in cognition structure, represents learner's knowledge to self-learnig object, and grows adaptive object by proprietor, verify the validity. This model lays the groundwork for design of personalized knowledge base, offers clue to development of adaptive ITS using knowledge base object.

User Adaptive Post-Processing in Speech Recognition for Mobile Devices (모바일 기기를 위한 음성인식의 사용자 적응형 후처리)

  • Kim, Young-Jin;Kim, Eun-Ju;Kim, Myung-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.338-342
    • /
    • 2007
  • In this paper we propose a user adaptive post-processing method to improve the accuracy of speaker dependent, isolated word speech recognition, particularly for mobile devices. Our method considers the recognition result of the basic recognizer simply as a high-level speech feature and processes it further for correct recognition result. Our method learns correlation between the output of the basic recognizer and the correct final results and uses it to correct the erroneous output of the basic recognizer. A multi-layer perceptron model is built for each incorrectly recognized word with high frequency. As the result of experiments, we achieved a significant improvement of 41% in recognition accuracy (41% error correction rate).

KTAG99: Highly-Adaptable Koran POS tagging System to New Environments (KTAG99: 새로운 환경에 쉽게 적응하는 한국어 품사 태깅 시스템)

  • Kim, Jae-Hoon;Sun, Choong-Nyoung;Hong, Sang-Wook;Lee, Song-Wook;Seo, Jung-Yun;Cho, Jeong-Mi
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.99-105
    • /
    • 1999
  • 한국어 정보처리를 위한 언어정보는 응용 분야에 따라 큰 차이를 보인다. 특히 말뭉치를 이용한 연구에서는 언어정보가 달라질 때마다 시스템을 새로 구성해야 하는 어려움이 있다. 본 논문에서는 이와 같은 어려움을 다소 완화시키기 위해 새로운 환경에 잘 적응할 수 있는 한국어 품사 태깅 시스템에 관해서 논한다. 본 논문에서는 이 시스템을 KTAG99라고 칭한다. KTAG99는 크게 실행부와 학습부로 구성되었다. 한국어 품사 태깅을 위한 실행부는 고유명사 추정기, 한국어 형태소 분석기, 통계기반 품사 태거, 품사 태깅 오류교정기로 구성되었으며, 실행부에서 필요한 언어정보를 추출하는 학습부는 고유명사 추정규칙 추출기, 형태소 배열규칙 추출기, 사전 추출기, 확률정보 추정기, 품사 태깅 오류수정 규칙 추정기로 구성되었다. KTAG99에서 필요한 언어정보의 대부분은 학습 말뭉치로부터 추출되거나 추정되기 때문에 아주 짧은 시간 내에 새로운 환경에 적응할 수 있다.

  • PDF

An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network (신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법)

  • Jae-Kal, Uk;Choi, Byung-Keol;Min, Suk-Ki;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.49-60
    • /
    • 1996
  • The objective of this paper is to develop an adaptive learning method for fuzzy hypercubes using a neural network. An intelligent control system is proposed by exploiting only the merits of a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to upda1.e the fuzzy control ru1c:s on-line with the output errors. As a result, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

A Study on Optimization of Partial Discharge Pattern Recognition using Genetic Algorithm (Genetic Algorithm을 이용한 부분방전 패턴인식 최적화 연구)

  • Kim, Seong-Il;Jung, Seung-Yong;Koo, Ja-Yoon;Jang, Yong-Mu
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.145-146
    • /
    • 2006
  • 본 논문은 부분방전(PD: Partial Discharge)의 패턴인식 확률 극대화를 목적으로 신경망(NN: Neural Network) 파라미터 중에서 은닉층 뉴런의 수, 모멘텀(momentum)의 Step size와 Decay rate 를 최적화하기 위하여 유전 알고리즘(GA: Genetic Algonthm)을 적응하였다. 실험적 연구의 대상으로서, GIS(Gas Insulated Switchgear)사고의 주요 원인으로 보고되어있는 결함들을 인위적으로 모의한 16개 Test cell을 이용하여 부분방전을 발생시켰다. 부분방전 신호는 본 연구팀이 개발한 센서를 이용하여 검출되어 데이터베이스가 구축되어 그로부터 추출된 학습 데이터들의 학습에 다음과 같은 5가지 신경망 모델이 적응되었다: Multilayer Perception (MLP), Jordan-Elman Network (JEN), Recurrent Network (RN), Self-Organizing Feature Map (SOFM), Time-Lag Recurrent Network (TLRN). 유전 알고리즘 적용 효율성을 분석하기 위하여 동일한 데이터를 이용하여 다음과 같은 두 가지 방법을 적용한 결과를 상호 비교하였다. 우선 상기 선택된 모델만 적용하였고 다근 하나는 상기 모델과 Genetic Algorithm이 동시에 적용되었다. 모든 모델에 대하여 학습오차와 패턴 분류 확률을 비교한 결과, 유전 알고리즘 적응 시 부분방전 패턴인식 확률이 향상되었음이 확인되어 향후 신뢰성 있는 GIS 부분방전 진단기술에 활용될 수 있을 것으로 사료된다.

  • PDF

A controller Design using Immune Feedback Mechanism (인체 면역 피드백 메카니즘을 활용한 제어기 설계)

  • Park, Jin-Hyun;Kim, Hyun-Duck;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.701-704
    • /
    • 2005
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They are difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

  • PDF

Development of Multimedia Contents for Internet-Based Physical Education (인터넷 활용 체육 수업을 위한 멀티미디어 컨텐츠 개발)

  • 이근무;조상철
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.807-811
    • /
    • 2002
  • 본 연구에서는 다양한 멀티미디어 기술과 인터넷의 열린 접근성을 이용하여 체육교육을 위한 학습보조 시스템을 개발하였다. 이 개별 학습별 수업의 요구에 부응하여 학습자와 상호작용이 가능하며 즉각적인 피드백을 통해 학습자에게 적절한 자극을 줌으로써 학습의욕의 고취를 강화할 수 있고 학습자의 능력에 따라 학습의 속도를 조절이 가능하여서 개별학습의 효과를 높여줄 수 있도록 계획되었다. 특히 문자, 그래픽, 영상, 음향, 음성 그리고 비디오 등과 같은 여러 미디어를 병합시켜 표현하는 멀티미디어를 교육에 적응시킨 하이퍼미디어 학습 코스웨어는 학습자의 주의력과 상상력을 키워 줄 수 있으며 학습자가 학습에 흥미를 갖고 학습과정에 능동적으로 참여할 수 있도록 하며 적극적으로 원하는 정보를 선정하고 학습 순서를 조정하는 등 학습 동기가 높은 상호작용적 학습 환경을 창조하고 자신에게 적합하게 여러 주제로 이동하고 정보를 연결해 보다 융통성 있는 시스템을 이용함으로써 학습의 효과를 높일 수 있음을 살펴보았다.

  • PDF

An Analysis of the Characteristics of Teachers' Adaptive Practices in Science Classes (과학 수업에서 교사의 적응적 실행의 특징 분석)

  • Heekyong Kim;Bongwoo Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.403-414
    • /
    • 2023
  • In this study, we examined the adaptive practices of science teachers in their classrooms and their perspectives on the distinguishing features of these practices within science subjects. Our analysis comprised 339 cases from 128 middle and high school science teachers nationwide, and 199 cases on the characteristics of adaptive practices in science disciplines. The primary findings were as follows: First, the most significant characteristic of adaptive practice in science disciplines pertained to experimental procedures. Within the 'suggestion of additional materials/activities' category, the most frequently cited adaptive practice, teachers incorporated demonstrations to either facilitate student comprehension or enhance motivation. Additionally, 'experimental equipment manipulation or presentation of inquiry skills' emerged as the second most common adaptive practice related to experiments. Notably, over 50% of teacher responses regarding the characteristics of adaptive practices in science pertained to experiment guidance. Second, many adaptive practices involving difficulties experienced by students in learning situations were presented, particularly in areas such as numeracy and literacy. Many cases were related to the basic ability of mathematics used as a tool in science learning and understanding scientific terms in Chinese characters. Third, beyond 'experiment guidance', the characteristic adaptive practices of science subjects were related to 'connections between scientific theory and the real world', 'misconception guidance in science', 'cultivation of scientific thinking', and 'convergence approaches'. Fourth, the cases of adaptive practice presented by the science teachers differed by school level and major; therefore, it is necessary to consider school level or major in future research related to adaptive practice. Fifth, most of the adaptive action items with a small number of cases were adaptive actions executed from a macroscopic perspective, so it is necessary to pay attention to related professionalism. Finally, based on the results of this study, the implications for science education were discussed.

Effective Adversarial Training by Adaptive Selection of Loss Function in Federated Learning (연합학습에서의 손실함수의 적응적 선택을 통한 효과적인 적대적 학습)

  • Suchul Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • Although federated learning is designed to be safer than centralized methods in terms of security and privacy, it still has many vulnerabilities. An attacker performing an adversarial attack intentionally manipulates the deep learning model by injecting carefully crafted input data, that is, adversarial examples, into the client's training data to induce misclassification. A common defense strategy against this is so-called adversarial training, which involves preemptively learning the characteristics of adversarial examples into the model. Existing research assumes a scenario where all clients are under adversarial attack, but considering the number of clients in federated learning is very large, this is far from reality. In this paper, we experimentally examine aspects of adversarial training in a scenario where some of the clients are under attack. Through experiments, we found that there is a trade-off relationship in which the classification accuracy for normal samples decreases as the classification accuracy for adversarial examples increases. In order to effectively utilize this trade-off relationship, we present a method to perform adversarial training by adaptively selecting a loss function depending on whether the client is attacked.