• 제목/요약/키워드: 적응형 통계적 재구성 기법

검색결과 1건 처리시간 0.018초

MDCT에서 선량 변화에 따른 딥러닝 재구성 기법의 유용성 연구 (A Study on the Usefulness of Deep Learning Image Reconstruction with Radiation Dose Variation in MDCT)

  • 김가현;김지수;김찬들;이준표;홍주완;한동균
    • 한국방사선학회논문지
    • /
    • 제17권1호
    • /
    • pp.37-46
    • /
    • 2023
  • MDCT의 딥러닝 재구성 기법(TrueFidelity, TF)의 유용성을 평가하고자 기존의 필터보정역투영법(Filtered back projection, FBP)과 적응형 통계적 재구성 기법(Adaptive Statistical Iterative Reconstruction-Veo, ASIR-V)의 화질을 비교 평가하였다. FBP, ASIR-V 50%, TF-H의 재구성 기법에서 선량을 17.29 mGy로 고정한 것과 10.37 mGy, 12.10 mGy, 13.83 mGy, 15.56 mGy로 변화시킨 영상을 획득하여 노이즈, CNR, SSIM을 측정하였다. 17.29 mGy에서 재구성 기법 변화를 주었을 때 TF-H가 FBP, ASIR-V에 비해 화질이 우수하다. 선량에 변화를 주었을 때 10.37 mGy TF-H와 FBP 비교 시 노이즈, CNR, SSIM은 유의한 차이가 있고(p<0.05), 10.37 mGy TF-H와 ASIR-V 50% 비교 시 유의한 차이가 없다(p>0.05). 선량이 가장 높은 15.56 mGy ASIR-V 50%와 선량이 가장 낮은 10.37 mGy TF-H 화질이 동일하므로 TF-H는 30%의 선량 감소 효과가 있다. 따라서 딥러닝 재구성 기법(TF)은 반복적 재구성 기법(ASIR-V)과 필터보정역투영법(FBP)보다 선량을 감소시킬 수 있었다. 이로 인해 환자의 피폭선량을 감소시킬 것으로 사료된다.