• 제목/요약/키워드: 적응적 점층적 학습

검색결과 3건 처리시간 0.21초

스트리밍 데이터에 대한 적응적 점층적 분류기의 적용 (Application of an Adaptive Incremental Classifier for Streaming Data)

  • 박정희
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1396-1403
    • /
    • 2016
  • 시간이 흐름에 따라 데이터 분포가 변하거나 관심 개념이 달라질 수 있는 스트리밍 데이터 분석에서 개념 변화에 적응해 나갈 수 있는 능력은 점층적 학습 과정에서 매우 중요하다. 이 논문에서는 개념 변화를 가진 스트리밍 데이터에서 적응적 점층적 분류기를 위한 일반화된 프레임워크를 제안한다. 분류기에 의해 예측되는 신뢰도 벡터와 클래스 라벨 벡터 사이의 거리를 이용하여 분류기 성능 패턴을 나타내는 분포를 구성하고 컨셉 변화에 대한 가설 검정을 수행한다. 추정되는 p-값을 이용하여 오래된 데이터에 대한 가중치를 자동으로 조정하여 분류기 업데이트에 이용한다. 제안된 방법을 두 가지 타입의 선형 판별 분류기에 적용한다. 컨셉 변화를 가진 스트리밍 데이터에 대한 실험 결과는 제안하는 적응적 점층적 학습 방법이 점층적 분류기의 예측 정확도를 크게 향상시킴을 입증한다.

컨셉 변동 스트리밍 데이터를 위한 적응적 가중치 조정을 이용한 동적 앙상블 방법 (A Dynamic Ensemble Method using Adaptive Weight Adjustment for Concept Drifting Streaming Data)

  • 김영덕;박정희
    • 정보과학회 논문지
    • /
    • 제44권8호
    • /
    • pp.842-853
    • /
    • 2017
  • 스트리밍 데이터는 시간에 따라 지속적으로 생성되는 데이터 시퀀스이다. 시간이 지남에 따라 데이터의 분포 또는 컨셉이 변화할 수 있으며, 이러한 변화는 분류 모델의 성능을 저하시키는 요인이 된다. 점층적 적응적 학습 방법은 컨셉 변화의 정도에 따라 현재 분류 모델의 가중치를 조절하여 업데이트를 수행함으로써 컨셉 변화에 대한 분류 모델의 성능을 유지할 수 있게 한다. 그러나, 컨셉 변화의 정도에 맞는 적절한 가중치를 결정하기가 어렵다는 문제점이 있다. 본 논문에서는 컨셉 변화에 따른 적응적 가중치 조정에 기반한 동적 앙상블 방법을 제안한다. 실험 결과는 제안한 방법이 다른 비교 방법들에 비해 높은 성능을 보여줌을 입증한다.

스트리밍 데이터에서 확률 예측치를 이용한 효과적인 개념 변화 탐지 방법 (An Effective Concept Drift Detection Method on Streaming Data Using Probability Estimates)

  • 김영인;박정희
    • 정보과학회 논문지
    • /
    • 제43권6호
    • /
    • pp.718-723
    • /
    • 2016
  • 스트리밍 데이터 분석에서 개념 변화가 일어나는 시점을 정확히 탐지하는 것은 분류 모델의 성능을 유지하는 데 있어서 매우 중요한 작업이다. 오류율은 스트리밍 데이터에서 개념 변화 탐지를 위해 많이 사용되는 척도이다. 그러나 0과 1로 이루어진 이진 값만으로 예측 결과를 묘사하는 것은 분류 모델의 행동 패턴을 나타내는 유용한 정보의 손실을 초래할 수 있다. 이 논문에서는 오류율을 이용하는 대신에 확률 예측치를 사용하여 분류기의 성능 패턴을 묘사하고 급격한 변화를 탐지하는 효과적인 개념 변화 탐지 방법을 제안한다. 합성데이터와 실제 스트리밍 데이터를 이용한 실험 결과는 제안한 방법이 개념 변화 시점을 탐지하는데 뛰어난 성능을 가짐을 보여준다.