• Title/Summary/Keyword: 적응광학계

Search Result 25, Processing Time 0.027 seconds

Modal Control of Adaptive Optical System for Wavefront Correction (파면보정을 위한 적응광학계의 Modal 제어)

  • 서영석;백성훈;박승규;김철중;양준묵
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.32-33
    • /
    • 2002
  • 적응광학계(adaptive optics system ; AO)는 파면을 파면측정장치로 측정하고 제어용 컴퓨터를 사용하여 파면보정장치를 구동함으로써 파면의 왜곡 및 수차를 보정하는 장치로, 최근 천문학 및 의료분야에서 활용되고 있다. 적응광학계의 제어는 파면을 영역별로 나누어 제어하는 zonal 방법과 모드로부터 제어하는 modal 방법이 있다. 본 연구에서는 파면 측정 장치(wavefront sensor ; WFS)인 Shack-Hartmann sensor로 측정된 파면의 기울기 정보로부터 Zernike 다항식의 계수를 계산하여 수차의 정보를 구현하고, 왜곡된 파면을 실시간으로 보정하기 위하여 Zernike 계수로부터 위상을 재구성한 후 보정장치인 변형거울을 제어하는 방법으로 파면을 보정하였다. (중략)

  • PDF

A wavefront analyzer for precise measurement of the visual acuity (시력 정밀 측정용 파면분석기)

  • 고동섭
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.72-73
    • /
    • 2003
  • 시력 진단장비로는 자각식 측정법인 시력표, 타각식 계측기로는 검영기와 자동굴절력측정기 등이 있으나 눈도 일반 광학계와 같이 공간적으로 불균일한 광학적 특성을 가지기 때문에 눈의 광학적 기능을 정확하게 진단하기 위해서는 광학수차의 공간 분포를 정밀하게 측정할 필요가 있다. 광학수차는 시력의 한계를 규정하고 안광학 기기의 설계에 있어서 중요한 요소이다. 눈의 광학수차를 측정하기 위한 파면분석기에는 공간분해굴절계, Tscherning 파면분석기, 광선추적파면분석기, 주사실틈굴절계, 그리고 Shack-Hartmann 파면분석기(SH 파면분석기) 등이 있으며, SH 파면분석기는 적응광학계에서도 유용하게 사용되고 있다. (중략)

  • PDF

Closed-loop Control of Adaptive Optical System using Coupling Factor of Zonal and Modal Control (지역/모드제어에서의 커플링계수를 이용한 적응광학계의 폐회로 제어 알고리즘)

  • Seo, Yeong-Seok;Baek, Seong-Hun;Park, Seung-Gyu;Kim, Sam;Park, Jun-Sik;Kim, Cheol-Jung;Yang, Jun-Muk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.108-109
    • /
    • 2003
  • 적응광학(Adaptive optics, AO)계에서 왜곡된 파면을 폐회로 보정하기 위해서는 파면측정 장치와 파면보정 장치인 변형거울의 상관관계를 찾고 보정신호를 제어해주는 알고리즘이 필요하다. 일반적으로 적응광학계를 제어하는 방법을 지역(Zonal)제어와 모드(Modal)제어로 나눌 수 있다. 지역제어는 파면을 영역별로 나누어 파면보정 장치의 각 구동소자 위치에 대응하는 신호를 발생하여 제어하는 방법이고, 모드제어는 파면의 정보를 Zernike 다항식과 같은 일정한 기저함수들의 선형 합으로 표현한 뒤 각 모드에 해당하는 제어신호를 발생하여 전체 파면을 제어하는 방법이다. (중략)

  • PDF

Development of Closed-loop Adaptive Optics system for Wavefront Correction (파면 보정을 위한 폐회로 적응광학계 개발)

  • 서영석;백성훈;박승규;김철중
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.188-189
    • /
    • 2000
  • 원자력 산업에서는 레이저진동측정기와 같은 원격/비접촉 측정기술이 많이 사용된다. 가동 중인 연구용 원자로의 핵연료 진동측정 같은 경우도 이러한 원격측정기술이 요구되고 있으나, 측정 대상체가 유동하는 유체 안에 있으므로 입사한 레이저의 파면이 변형되어 레이저진동측정기의 적용이 어렵다. 적응광학계(adaptive optics system; 또는 능동광학계)는 유동 층에서 변형된 파면을 파면측정 센서로 측정하고, 변형거울(deformable mirror)등의 파면보정 장치를 사용하여 파면을 보정하는 기술이다. 본 연구에서는 Shack-Hartmann 파면측정센서를 개발하고, 변형거울과 파면측정센서를 컴퓨터에 연결하여 레이저 파면의 왜곡상태를 폐회로(closed-loop)로 보정하는 장치를 개발하였다. (중략)

  • PDF

Perform Analyses of the Deformable Mirror for Adaptive Optics (적응 광학계 변형 거울의 성능 해석)

  • 엄태경;이완술;이준호;윤성기
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.30-31
    • /
    • 2002
  • 하나의 구동기를 작동하여 거울을 변형시킬 때, 변형된 거울면의 형태를 영향 함수(influence function)라고 정의하며, 이러한 영향 함수를 이용하여 적응 광학계의 주요한 광학 요소인 변형 거울을 효과적으로 모형화하고 설계할 수 있다. 본 논문에서는 유한요소해석을 이용하여 계산된 변형 거울의 실제 영향 함수를 가우시안 함수(Gaussian function) 형태로 단순화하고, 추가로 구동기들 사이의 영향을 고려한 커플링 계수(coupling coefficient)를 도입하여, 주어진 구동기 배열에 대한 영향 함수를 결정하였다. (중략)

  • PDF

Development of a Fast Control Device for an Adaptive Optics System (고속 보정을 위한 적응광학시스템의 제어장치 개발)

  • 박승규;백성훈;김민석;서영석;유병덕;김철중;나성웅
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.106-107
    • /
    • 2003
  • 본 연구에서는 고속 보정이 가능한 적응광학 시스템의 제어장치를 개발하였다. 개발된 장치는 윈도우즈 환경의 개인용 컴퓨터 상에서 구성하였으며, 원거리에서도 유선을 이용하여 안정적으로 제어하기 위하여 통신방식에 기초하여 제어알고리즘을 구성하였다. 개발된 적응광학 시스템의 전체 구성도는 그림 1과 같으며, 윈도우즈 환경의 개인용 컴퓨터와 변형거울, 기울기거울, 하트만 센서 및 간섭계로 구성되어있다. (중략)

  • PDF

Wavefront Compensation Using a Silicon Carbide Deformable Mirror with 37 Actuators for Adaptive Optics (적응광학계용 37채널 SiC 변형거울을 이용한 파면 보상)

  • Ahn, Kyohoon;Rhee, Hyug-Gyo;Lee, Ho-Jae;Lee, Jun-Ho;Yang, Ho-Soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.106-113
    • /
    • 2016
  • In this paper, we deal with the wavefront compensation capability of a silicon carbide (SiC) deformable mirror (DM) with 37 actuators for adaptive optics. The wavefront compensation capability of the SiC DM is predicted by computer simulation and examined by actual experiments with a closed-loop adaptive optics system consistsing of a light source, a phase plate, a SiC DM, a high speed Shack-Hartmann sensor, and a control computer. Distortion of wavefront is caused by the phase plate in the closed-loop adaptive optics system. The distorted wavefront has a peak-to-valley (PV) wavefront error of $0.3{\mu}m{\sim}0.9{\mu}m$ and root-mean-square (RMS) error of $0.06{\mu}m{\sim}0.25{\mu}m$. The high-speed Shack-Hartmann sensor measures the wavefront error of the distortion caused by the phase plate, and the SiC DM compensates for the distorted wavefront. The compensated wavefront has residual errors lower than $0.1{\mu}m$ PV and $0.03{\mu}m$ RMS. Consequently, we conclude that we can compensate for the distorted wavefront using the SiC DM in the closed-loop adaptive optics system with an operating frequency speed of 500 Hz.