• Title/Summary/Keyword: 적외선 감지센서

Search Result 135, Processing Time 0.022 seconds

A study on sensing for abnormality of BUS BAR in motor control center (모터컨트롤센터의 BUS BAR 이상 감지를 위한 실험적 연구)

  • Kim, Sung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5838-5842
    • /
    • 2011
  • The study mainly aims to explore how deterioration of motor control center, namely MCC, and vibration put impact on temperature of bus bar as well as temperature change of bolt-nut joint. The motor control center consists of three internal parts (i.e. R, S, T) which are for motor operation of high capacity. Two dimensional mechanism for measuring temperature was designed and manufactured with infrared temperature sensor. Installing it in inner motor control center enabled researcher to monitor temperature of bus bar as well as amount of change of current regularly. Temperature change of bus bar according to load was primarily examined based on a bolted joint in the experiment. It was clearly verified that temperature change of bus bar was proportional to current consumption. Therefore, installing non-contact two dimensional mechanism for measuring temperature in motor control center would be expected to prevent temperature rise owing to overload current and power outage as well as fire accident which can be triggered by poor electrical contact.

Development of a Device for Estimating the Optimal Artificial Insemination Time of Individually Stalled Sows Using Image Processing (영상처리기법을 이용한 스톨 사육 모돈의 인공수정적기 예측 장치 개발)

  • Kim, D.J.;Yeon, S.C.;Chang, H.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.677-688
    • /
    • 2007
  • 돼지를 포함한 대부분의 동물은 일정한 발정주기를 가지고 일정한 시기에 배란을 하는 자연배란동물이지만, 토끼, 고양이, 밍크 등의 암놈은 교미자극에 의해 배란이 일어나는 유기배란동물이다. 또한 1년에 한 번만 발정하는 단발정동물과 1년에 수차례 발정하는 다발정동물이 있다. 이 중에서 모돈은 1년에 수차례 발정하는 다발정 동물로서 발정기에 들면 비발정기와는 다른 행동을 나타낸다(Diehl 등, 2001). 양돈가의 수익을 최대화하기 위해서는 비생산일수를 최소로 줄여야 한다. 모돈의 비생산일수를 줄일 수 있는 한 가지 방법은 성공적으로 교배를 시키는 것이다. 이처럼 성공적으로 교배를 시키기 위해서는 수정적기를 정확히 예측해야 한다. 만약 수정적기를 정확히 판단하지 못하여 수태가 되지 않으면, 비생산일수가 늘어나 손실을 입게 된다. 따라서 수정적기를 정확히 판단하는 것은 모돈의 성공적인 인공수정에 있어서 중요한 요소이다. 수정적기는 배란이 일어나기 전 10시간에서 12시간 사이이며, 발정이 시작되는 시점을 기준으로 하였을 때 경산돈의 경우 26시간에서 34시간 사이이고 미경산돈의 경우는 18시간에서 26시간 사이이다(Evans 등, 2001). 현재 하루에 두 번 모돈의 발정을 확인하는 것이 일반화되어 있으며, 이 때 웅돈을 접촉시키거나 육안관찰을 통하여 발정 유무를 판단한다. 이러한 방법에는 숙련된 기술과 풍부한 경험이 요구될 뿐만 아니라 총 소요노동력의 30% 정도가 요구된다(Perez 등, 1986). 하루에 두 번밖에 발정을 감지하지 않기 때문에 발정이 언제 시작되었는지를 정확히 알 수 없으며, 또한 발정의 대부분이 새벽에 시작되므로 수정적기를 정확히 판단하기란 매우 어렵다. 만약 발정을 감지했더라도 적기에 인공수정을 하지 못한다면, 수태율이 낮아지므로 경제적 손실이 초래된다. 현재 이러한 문제점 때문에 2회에서 3회에 걸쳐 인공수정을 하고 있으나 이에 따른 소요비용과 소요노동력 등은 양돈가의 부담을 가중시키는 요인이 되고 있다. 돼지는 발정기가 되면 비발정기에 나타내지 않던 외음부의 냄새를 맡는 행동, 귀를 세우는 행동 및 승가허용 행동 등을 나타낸다(Diehl 등, 2001). 또한 돼지는 비발정기에 비하여 발정기에 더 많은 활동량을 나타낸다(Altman, 1941; Erez and Hartsock, 1990). Freson 등(1998)은 스톨에서 개별적으로 사육되고 있는 모돈의 활동량을 적외선센서를 이용하여 측정함으로써 발정을 86%까지 감지하였다고 보고하였다. 그러나 이 연구는 단지 모돈의 발정을 감지하였을 뿐 번식관리에 있어서 가장 중요한 수정적기의 판단 기준을 제시하지 못하였다. 따라서, 본 연구는 스톨에서 사육되는 모돈의 활동량을 측정함으로써 발정시작시각을 감지하고 이를 기준으로 인공수정적기를 예측할 수 있는 인공수정적기 예측 장치를 개발한 후 이의 성능을 농장실증실험을 통하여 시험하고자 수행되었다.

The Design of the Obstacle Avoidances System for Unmanned Vehicle Using a Depth Camera (깊이 카메라를 이용한 무인이동체의 장애물 회피 시스템 설계)

  • Kim, Min-Joon;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.224-226
    • /
    • 2016
  • With the technical development and rapid increase of private demand, the new market for unmanned vehicle combined with the characteristics of 'unmanned automation' and 'vehicle' is rapidly growing. Even though the pilot driving is currently allowed in some countries, there is no country that has institutionalized the formal driving of self-driving cars. In case of the existing vehicles, safety incidents are frequently happening due to the frequent malfunction of the rear sensor, blind spot of the rear camera, or drivers' carelessness. Once such minor flaws are complemented, the relevant regulations for the commercialization of self-driving car and small drone could be relieved. Contrary to the ultrasonic and laser sensors used for the existing vehicles, this paper aims to attempt the distance measurement by using the depth sensor. A depth camera calculates the distance data based on the TOF method calculating the time difference by lighting laser or infrared light onto an object or area and then receiving the beam coming back. As this camera can obtain the depth data in the pixel unit of CCD camera, it can be used for collecting depth data in real-time. This paper suggests to solve problems mentioned above by using depth data in real-time and also to design the obstacle avoidance system through distance measurement.

  • PDF

A Real-time Correction of the Underestimation Noise for GK2A Daily NDVI (GK2A 일단위 NDVI의 과소추정 노이즈 실시간 보정)

  • Lee, Soo-Jin;Youn, Youjeong;Sohn, Eunha;Kim, Mija;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1301-1314
    • /
    • 2022
  • Normalized Difference Vegetation Index (NDVI) is utilized as an indicator to represent the vegetation condition on the land surface in various applications such as land cover, crop yield, agricultural drought, soil moisture, and forest disaster. However, satellite optical sensors for visible and infrared rays cannot see through the clouds, so the NDVI of the cloud pixel is not a valid value for the land surface. This study proposed a real-time correction of the underestimation noise for GEO-KOMPSAT-2A (GK2A) daily NDVI and made sure its feasibility through the quantitative comparisons with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and the qualitative interpretation of time-series changes. The underestimation noise was effectively corrected by the procedures such as the time-series correction considering vegetation phenology, the outlier removal using long-term climatology, and the gap filling using rigorous statistical methods. The correlation with MODIS NDVI was higher, and the difference was lower, showing a 32.7% improvement compared to the original NDVI product. The proposed method has an extensibility for use in other satellite products with some modification.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.