• Title/Summary/Keyword: 저항성 황화광물 정광

Search Result 2, Processing Time 0.018 seconds

Optimization of Gold Leaching from the Refractory Sulfide Concentrate by HCl-NaClO-FeCl3 Solution (HCl-NaClO-FeCl3 용액을 이용한 저항성 황화광물 정광으로부터 금 용출 최적화)

  • Kim, Bong-Ju;Cho, Kang-Hee;Lee, Jong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • In order to optimize gold leaching from refractory sulfide concentrate, a HCl-NaClO-$FeCl_3$ solution with varying attributes was applied to the roasted concentrate from Uil mine. The gold from Uil mine occurs in the form of invisible gold that is difficult to leach. The results of the gold leaching experiments showed that the best gold leaching parameters were $550^{\circ}C$ of roasting temperature, 2.0 M of concentration, 1.0% of pulp density, and $70^{\circ}C$ of leaching temperature. It is confirmed that the HCl-NaClO-$FeCl_3$ solution was an environmentally friendly method to leach gold and silver from the refractory sulfide concentrate as an alternative lixiviant to cyanide.

Mineralogical Phase Transform of Salt-roasted Concentrate and Enhancement of Gold Leaching by Chlorine-hypochlorite Solution (소금-소성정광에 대한 광물학적 상변화와 염소-차아염소산 용액을 이용한 금 용출 향상)

  • Kim, Bong-Ju;Cho, Kang-Hee;Oh, Su-Ji;Choi, Seoung-Hwan;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • In order to optimize the gold leaching process from refractory sulfide concentrate, a chlorine-hypochlorite solution with varying concentrations and temperatures were applied to salt-roasted concentrate. The concentrate consisted of pyrite, chalcopyrite, and galena, which were turned into hematite through air-roasting at $750^{\circ}C$. Also these concentrates were changed into hematite and nantokite (CuCl)) through salt (NaCl)-roasting at $750^{\circ}C$. The results of the gold leaching experiments showed that the best gold leaching parameters were obtained when the hydrochloric acid-sodium hypochlorite mix was at a ratio of 1 : 2, the added concentration was 1.0 M concentration, the pulp density was 1.0%, and the leaching was done at a $60^{\circ}C$ leaching temperature. The leaching rate for gold was much greater in the roasted concentrate than in the raw concentrate. The leaching rate was greater in the salt-roasted concentrate than in the plain roasted concentrate too. From XRD analysis, quartz was found in the salt-roasted concentrate and in the solid residue from the chlorine-hypochlorite leaching solution at $60^{\circ}C$.