• Title/Summary/Keyword: 저주파수 운동

Search Result 17, Processing Time 0.023 seconds

Effect of Low Frequency Vibration on Human and Its Application (저주파수 진동이 인체에 미치는 영향과 응용(ISO 2631-3 내용을 중심으로))

  • 장한기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.823-827
    • /
    • 2001
  • 인체에 영향을 미치는 진동을 분류하는데 가장 중요한 기준은 주파수이다. ISO의 인체진동관련 규격에서는 인체에 영향을 미치는 거동을 저주파수 운동(0.63Hz이하)과 진동(1~80Hz)으로 나누고 있다[1]. ISO 2631에서는 주파수별로 인체에 미치는 영향을 그림1과 같이 가중치로 정의하여 제시하고 있다. 저주파수 영역의 운동은 외부 거동(주로 수평방향)에 대하여 자세를 유지하기 위해 힘Tm게 되므로 물리적인 피로감을 줄 뿐만 아니라 'Motion sickness'란 증상을 유발한다.(중략)

  • PDF

Analysis of Dynamic Positioning System Based on Self-Tuning Control (자기동조 제어기를 이용한 위치확보 시스템에 관한 연구)

  • Sang-M.,Lee;Pan-M.,Lee;Sa-Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.32-40
    • /
    • 1989
  • Dynamic ship positioning(DP) system is used to keep the position and heading of a ship, or a floating platform, above a pre-selected site on the seabed by using thrusters. This paper presents a control system based on filtering technique and optimal control theory. The planar motions of a vessel are assumed to consist of low frequency(LF) component and high frequency(HF) one. The former is mainly due to thrusters, current, wind and second order wave forces, while the latter is mainly due to first order oscillatory component of the wave force. Furthermore position measurement signals include the noise. By means of self-tuning filter and Kalman filter techniques, LF motion estimates and HF ones are seperately achieved from the position measurements of the vessel. The estimated LF motions are used as input to the feedback loops. The total thruster power is minimized using the Linear Quadratic Gaussian control theory. The performance of the vessel with the DP system is investigated by computer simulation.

  • PDF

Slow Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 저주파수 운동 해석)

  • 이호영;박종환;곽영기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizontal plane motions such as surge, sway and yaw. The added mass, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from three-dimensional panel method in the frequency domain. The mooring lines are modeled as quasi-static catenary cable. As a numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Analysis of Manoeuvrability of a Ship in Waves by 3-Dimensional Panel Method (3차원 파넬방법에 의한 파중 선박의 조종성능 해석)

  • S.P. Ann;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.82-98
    • /
    • 1994
  • A mathematical model for the hydrodynamic forces acting on the ship manoeuvring in waves is formulated and a numerical method for the problem is developed. The motion of a ship, which manoeuvres in waves, may be thought to have two components; one is a high frequency component due to encounter waves, and the other is a low frequency component due to manoeuvring motion. So the method of two time scale expansion is used to divide linear boundary value problem. For the effects of waves on the manoeuvring motion of a ship, only the second order drift forces are considered. The integral equation for the velocity potential is solved by 3 dimensional panel method and hydrodynamic forces are calculated by direct integral method.

  • PDF

Study on low frequency swishing sound field by singularities in circular motion with large radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.90-95
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, singularity in circular motion with large radius is introduced as a noise source model. By employing Lowson's acoustic analogy, simple exact solution is obtained. The solution shows that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding spectra of sound pressure for the receiver locations where the retarded time distributions are almost the same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing.

  • PDF

Nonlinear Observer Design for Dynamic Positioning Control of a Surface Vessel (선박운동제어를 위한 비선형 관측기 설계)

  • Kim, Y.B.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.79-85
    • /
    • 2012
  • 본 논문에서는 항내에서 저속으로 운동(항해)하는 선박의 운동제어문제에 대해 고려하고 있다. 항내에서는 특히 그 운동속도가 느리므로 일반 항해에서와는 달이 저주파대역에서의 운동특성이 중요하다. 대부분의 중대형선박이 항내에서 터그보트에 의해 접안시설로 이동하게 된다. 이러한 사실을 고려하여 대상선박이 4기의 터그보트에 의해 제어되는 선박의 제어계 설계문제에 대해 고찰하고 있다. 주요 연구내용은 크게 두가지로 구분된다. 첫째 비선형특성이 강하게 포함되어있는 선박운동특성을 고려하여 비선형관측기를 설계한다. 이것은 특히 저주파수 대역에서 선박의 위치와 속도 등 제어신호를 계산하는데 필요한 정보를 추정하는데 유효한 방법으로 잘 알려져 있다. 이를 기반으로 외란 등에 강인한 슬라이딩모드 제어기를 설계한다. 결과적으로 비선형관측기를 포함한 슬라이딩모드제어기의 유용성을 시뮬레이션을 통해 검증하였으며 이 결과는 실험을 위한 유용한 기초자료로 활용될 것이다.

Study on Low Frequency Swishing Sound Field by a Singularity in Circular Motion with Large Radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.569-574
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, acoustic source model using a singularity in circular motion is introduced to derive analytic solution of Lowson acoustic analogy in time domain. Results in time and frequency domains computed by the solution show apparent modulation of amplitude and frequency. The solution indicates that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding time-averaged spectra of sound pressure at the receiver locations where the retarded time distributions are almost same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing. Finally, as an introduction of procedure to quantify low frequency swishing noise level, relative variation of overall sound pressure level is obtained using tonal low frequency noise model.

Dynamic Position Control Method for the Buffer Unit of a Deepsea Mining System (해석심해자원개발용 버퍼의 동적위치제어기법)

  • Kim, Ki-Hun;Choi, Hang-S.;Hong, Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.57-63
    • /
    • 2002
  • This paper describes a control algorithm for the buffer of a deep-sea mining system, in which the buffer is connected to a long slender pipe and then to a surface ship on one end, and to a collector on sea floor through a flexible hose on the other end. A mathematical modeling is established for designing the controller for buffer thrusters, in which the dynamic response of the long pipe is taken into account based on the mode superposition method. The fluid loading acting on the pipe is estimated by using Morison's formula. For simplicity, the surface ship is assumed to be kept stationary, the reaction from the flexible hose is ignored and only the lateral motions are considered. In order to guide the buffer to react only to the low-frequency motion of the surface vessel, the FIR digital filter is introduced to a PID-based controller It can be shown numerically that the high frequency component of the ship's motion can be effectively filtered out by using the FIR low pass filter.

The Under Water Ambient Noise at Voting-il Bay (영일만 부근에서의 수중소음)

  • HA Kang Lyeol;YOON Gab Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.197-201
    • /
    • 1983
  • Underwater ambient noise level was measured at two points near the Youngil Bay. The environmental characteristics depend upon oceanographic conditions of sound propagation ana its implication on the source of ambient noise. Some noise sources were estimated, and the effect of the oceanographic conditions on the noise level variation had been considered. The results were as follows : 1) At the nearshore station of Youngil Bay, the ambient noise level in the near bottom(45m) was lower than that of the near surface(10m) by 15dB. This difference was due to spherical spreading from the upper to the lower layer. 2) At the open sea station which is located outside of the thermal front existing near the Youngil Bay, the ambient noise level of the upper layer(20m) was higher than that of the lower layer (100m) by $8{\sim}12dB$ below 50Hz and $15{\sim}23dB$ above 50Hz. 3) Above 60Hz the ambient noise level at the nearshore station was higher than that of the open sea station, while below 60Hz, the result was reverse. It appears that a boundary layer existed between the two stations.

  • PDF

Studies in Biomechanical Properties on Brain-spinal Cord Response Mechanism by Human Posture Control Ability (자세조절능력에 따른 뇌-척수 신경 반응기전의 역학적 해석)

  • Yoo, Kyoung-Seok
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.6
    • /
    • pp.449-459
    • /
    • 2019
  • The purpose of this study is to identify how postural mechanics affects postural control on balance and stability by using frequency analysis technique from the kinematic data acquired during the one leg standing posture. For this purpose, the experimental group consisted of two groups, the normal group (n=6) and the national Gymnastics group (n=6). Displacement data of CoP were analyzed by frequency analysis of rambling (RM) and trembling (TR) by FFT signal processing. As a results, there was a significant difference in evaluating the stabilization index between the two groups with the eyes open and closed one leg stnading (p <.05). The cause of the difference was found to be the output of the maximum amplitude of RM (f1) and TR (f2) (p <.05). In particular, in the low frequency RM of 8-9 Hz, which is a natural frequency of signal wave involved in postural feedback feedback, the main frequency appeared to be performs the exercise mechanism of stable brain posture control. And in the high frequency TM of 120-135 Hz, it is considered that the adaptation of the reflective muscle response is minimized to minimize posture shaking. In conclusion, this study provides evidence for the intrinsic main frequencies according to the postural control ability which affects the CNS in one leg standing.