CCTV를 사용하여 저조도와 같은 열악한 환경에서도 범죄 예방 및 특정 대상을 정확히 확인하는 것이 최근 더욱 중요해지고 있다. 저조도 환경하의 CCTV 응용에서는 눈에 거슬리지 않는 근적외선 조명을 이용하여 영상을 획득하는데, 이 경우, 비록 사람 눈에는 어두운 저조도 환경이지만 근적외선 조명을 사용하기 때문에 영상의 상세 텍스처 정보를 얻을 수 있는 장점은 있지만, CCTV 영상내의 물체 판별이나 인물 확인을 위하여 매우 요긴한 정보인 색상 정보는 얻기 힘들다는 단점이 있다. 본 논문에서는 저조도 환경에서 근적외선 조명을 사용하여 얻은 CCTV 영상으로부터 DCGAN을 사용하여 색상정보를 획득하는 방법과 이때 재구성된 색상 영상에 생기는 색상 잡음을 제거하는 방법을 제시한다.
본 논문에서는 저조도 환경에서 촬영된 영상의 조도를 개선하여 얼굴 검증 정확도를 높이는 방법을 제안하였다. 입력 이미지의 조도 개선을 통해 얼굴 검출 정확도를 개선하며, 검출된 얼굴의 반복적인 조도 향상을 통해 생성된 다수의 특징 벡터를 이용하여 얼굴 검증에 이용하였다. 얼굴 검출 및 검증 정확도 측정을 위해 K-FACE 데이터셋을 이용하였다. 저조도 환경에서 촬영된 검증 이미지에 대하여, 제안하는 특징 벡터 합성 방법으로 인해, 동일인 쌍 및 타인 쌍의 유사도 점수 분포의 표준 편차가 줄어드는 경향을 확인했으며, 이로 인해 검증 성능이 높아지는 결과를 얻었다.
광원 및 조명이 미약한 환경에서 획득된 저조도 영상은 인지적 및 색 왜곡적 측면에서 취약점을 가진다. 영상의 색 복원을 위한 연구인 색 항등성 기법은 저조도 환경에 적합하지 않기 때문에 저조도 영상을 대상으로 적용할 경우에는 좋은 성능을 내지 못한다. 이러한 문제를 해결하기 위하여 본 논문에서는 저조도 영상의 색 복원을 위한 톤 매핑 및 색 항등성 기법에 대해 분석한다. 톤 매핑 기법은 저조도 영상의 밝기를 개선해 색 항등성 기법의 적용을 가능하도록 하기 위해 사용되며, 이후 다양한 색 항등성 기법을 밝기 조절된 저조도 영상에 적용해 색 복원에 적합 여부를 판단한다.
AI영상 기반 건설현장 안전관리 모니터링 시스템 개발 및 적용하는 추세에 다양한 환경변화에 따른 위험 객체 탐지 딥러닝 모델 개발에 많은 연구적 관심이 쏟아지고 있다. 여러 환경 변화요인 중 저조도 조건에서 객체 검출 모델의 정확도는 현저히 감소하며, 저조도 환경을 고려한 학습을 수행하더라도 일관적인 객체 탐지 정확도를 확보할 수 없다. 이에 따라 저조도 영상을 강화하는 영상 전처리 기술의 필요성이 대두된다. 따라서, 본 논문은 취득된 건설 현장 영상 데이터를 활용하여 다양한 딥러닝 기반 저조도 영상 강화 모델(GLADNet, KinD, LLFlow, Zero-DCE)을 학습하고, 모델별 저조도 영상 강화 성능을 비교 검증실험을 진행하였다. 저조도 강화된 영상을 시각적으로 검증하였고, 영상품질 평가 지수(PSNR, SSIM, Delta-E)를 도입하여 정량적으로 분석하였다. 실험 결과, GLADNet의 저조도 영상 강화 성능이 정량·정성적 평가에서 우수한 결과를 보여줬으며, 저조도 영상 강화 모델로 적합한 것으로 분석되었다. 향후 딥러닝 기반 객체 검출 모델에 저조도 영상 강화 기법이 전처리 단계로 적용한다면, 저조도 환경에서 일관된 객체 검출 성능을 확보할 것으로 예상된다.
본 논문에서는 영상을 분할하고, 분할된 영상의 로컬 히스토그램을 이용하여 저조도 환경의 블랙박스 영상 향상 방법을 제안한다. 기존 블랙박스 영상은 저조도 환경에서 촬영되기 때문에 향상 기법을 적용 시 과도한 향상 효과가 발생하는 단점이 있다. 제안 알고리즘은 3단계 과정으로 구성된다. 1단계는 입력 영상을 ($N{\times}M$)개 조각으로 분할하고, 분할된 부분 영상과 인접한 부분 영상을 그룹 영상으로 묶어 구분한다. 2단계는 구분된 그룹 영상을 각각의 로컬 히스토그램을 이용하여 명암 향상 처리를 수행한다. 3단계는 명암 향상 처리된 각각의 그룹 영상의 특성을 반영한 전달 함수를 이용하여 전체 영상을 재구성한다. 알고리즘 검증을 위하여 지하 주차장과 야간 운행 영상을 저조도 환경 영상으로 사용하였다. 제안 알고리즘은 다양한 저조도 환경의 블랙박스 영상을 향상시켜 차량 운행 환경 정보 획득에 유리한 영상을 제공할 수 있다.
현대 사회는 4차 산업 혁명과 IoT 기술 등의 발전으로 영상 처리 분야의 활용이 급증하고 있다. 특히, 에지 검출은 이미지 분류, 객체 검출 등 영상 처리 응용에서 필수적인 전처리 과정으로 여러 분야에서 널리 사용되고 있다. 에지를 검출하기 위한 기존의 방법에는 소벨 필터(Sobel edge detection filter), 로버츠 필터(Roberts edge detection filter), 프리윗 필터(Prewitt edge detection filter), LoG(Laplacian of Gaussian) 등이 있다. 하지만 기존의 방법들은 명암도가 낮은 저조도 환경에서 에지 검출 특성이 다소 미흡한 성능을 보인다는 단점이 있다. 따라서 본 논문에서는 저조도 환경에서도 에지 검출 특성을 높이기 위해 명암도 분석에 기반한 에지 검출 알고리즘을 제안한다.
저조도 환경에서 획득한 CCTV 컬러 영상은 품질이 좋지 않으므로, 일정 조도 이하의 저조도에서 CCTV 는 근적외선을 이용하여 회색조 영상을 획득한다. 본 논문에서는 저조도에서 획득한 근적외선 영상을 이용한 물체 검출 및 GAN 을 통해 재구성된 컬러 영상에 생기는 컬러 잡음을 제거하는 방법을 제안한다. 기존의 재구성된 컬러 영상의 PSNR 측면에서 22.5dB 가 나왔으나, 영상 합성을 통해 컬러 노이즈를 제거한 영상의 PSNR 은 34dB 가 나왔다. 본 논문은 컬러 노이즈를 제거하면서 원래의 색의 유지가 제대로 이루어 졌는지는 주관적인 평가 방법을 통해 확인하였다.
보안 시스템의 중요성이 늘어남에 따라 열악한 CCTV 영상 환경에서의 범죄 예방 및 검거의 중요성이 늘어나고 있다. 본 논문은 CCTV의 제약 환경에 맞는 데이터 취득, 근적외선 및 가시영역 혼합 영상의 분리 및 복원 방법을 제안한다. 데이터 취득 및 학습시킨 데이터의 성능은 PSNR 방법을 이용해 비교하였고, 저조도 영역의 근적외선과 가시영역의 분리 성능은 34dB 이상이 나왔다. 색 복원은 PSNR 측면에서는 22.5dB가 나왔고, 저조도 영역의 분리 성능과 비교하여 낮은 성능을 기록하다. 색복원의 평가 정도는 원본 영상과 주관적 평가방법을 사용하여 비교하였다.
디지털 카메라의 발전으로 인해 점차 영상을 사용한 철도의 안전관리기법이 그 사용범위를 넓히고 있다. 그러나 선로의 특성상 많은 저조도 환경에서의 영상 취득 과정에서는 심한 잡음이 영상의 화질을 떨어뜨릴 뿐만 아니라 추가적인 영상처리의 오류를 발생시킨다. 최근의 3D 잡음제거 방식은 시간적으로 연속된 영상간의 픽셀을 참조함으로 2D 잡음제거보다 더 나은 잡음 제거 결과를 얻을 수 있으나 움직임 부분에서는 오히려 모션 블러와 같은 열화가 나타나게 된다. 본 논문에서는 저조도 영상에서 적응적 가중평균필터를 이용하여 보다 정확한 움직임 검출을 구현하며, 3D 잡음제거 방식에 2D잡음 제거 방식의 결과를 적응적으로 사용하여 객관적 화질과 주관적 화질을 개선하였다.
미광증폭장비는 밤과 같이 어두운 환경에서 주로 가시광선 대역의 약한 빛을 증폭시켜 육안으로 관측할 수 있을 정도의 밝기로 만들어주는 장비이다. 이러한 방식은 어느 정도의 약한 빛이 존재하는 환경에서는 그 증폭 효과를 제대로 발휘하여 선명한 영상을 얻을 수 있지만, 달빛조차 존재하지 않는 극 저조도 환경에서는 기본적으로 증폭시킬 빛이 부족하여 출력 영상에 많은 노이즈로 인하여 화면의 선명도가 저하된다. 본 연구에서는 이러한 극 저조도 환경에서 발생하는 미광증폭 장비의 출력 노이즈를 다중 필터와 이방성 확산을 이용하여 화질을 개선하는 방법을 제안하였다. 실험을 위하여 극 저조도 조건에 맞는 환경을 구성한 상태에서 미광증폭장비의 출력 영상을 촬영한 후, 화질 개선을 위한 신호처리를 하였다. 신호처리를 위한 필터의 구성은 영상에 나타나는 주된 노이즈인 점 노이즈 제거와 가우시안 노이즈의 효과적인 제거를 위하여 메디안 필터, 위너 필터를 적용시킨 후 이방성 확산을 이용하였다. 실험 결과 화질이 개선됨을 육안으로 확인할 수 있었고, 정량 지표인 PSNR 및 SSIM으로 비교하여 측정한 방법에서도 모두 개선된 값을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.