• Title/Summary/Keyword: 저조도 환경

Search Result 365, Processing Time 0.038 seconds

Color Noise Detection and Image Restoration for Low Illumination Environment (저조도 환경 기반 색상 잡음 검출 및 영상 복원)

  • Oh, Gyoheak;Lee, Jaelin;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.88-98
    • /
    • 2021
  • Recently, the crime prevention and culprit identification even in a low illuminated environment by CCTV is becoming ever more important. In a low lighting situation, CCTV applications capture images under infrared lighting since it is unobtrusive to human eye. Although the infrared lighting leads to advantage of capturing an image with abundant fine texture information, it is hard to capture the color information which is very essential in identifying certain objects or persons in CCTV images. In this paper, we propose a method to acquire color information through DCGAN from an image captured by CCTV in a low lighting environment with infrared lighting and a method to remove color noise in the acquired color image.

A Face Verification using Iterative Light Enhancement in Low Light Environment (저조도 환경에서의 반복적 조도 향상을 이용한 얼굴 검증)

  • Lee, Sanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1222-1225
    • /
    • 2022
  • 본 논문에서는 저조도 환경에서 촬영된 영상의 조도를 개선하여 얼굴 검증 정확도를 높이는 방법을 제안하였다. 입력 이미지의 조도 개선을 통해 얼굴 검출 정확도를 개선하며, 검출된 얼굴의 반복적인 조도 향상을 통해 생성된 다수의 특징 벡터를 이용하여 얼굴 검증에 이용하였다. 얼굴 검출 및 검증 정확도 측정을 위해 K-FACE 데이터셋을 이용하였다. 저조도 환경에서 촬영된 검증 이미지에 대하여, 제안하는 특징 벡터 합성 방법으로 인해, 동일인 쌍 및 타인 쌍의 유사도 점수 분포의 표준 편차가 줄어드는 경향을 확인했으며, 이로 인해 검증 성능이 높아지는 결과를 얻었다.

  • PDF

A Study of Tone Mapping and Color Constancy Methods for Enhancing Low Light Level Images (저조도 영상의 개선을 위한 톤 매핑 및 색 항등성 기법에 관한 연구)

  • Lee, Woo-Ram;Jun, Byoung-Min
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.258-259
    • /
    • 2013
  • 광원 및 조명이 미약한 환경에서 획득된 저조도 영상은 인지적 및 색 왜곡적 측면에서 취약점을 가진다. 영상의 색 복원을 위한 연구인 색 항등성 기법은 저조도 환경에 적합하지 않기 때문에 저조도 영상을 대상으로 적용할 경우에는 좋은 성능을 내지 못한다. 이러한 문제를 해결하기 위하여 본 논문에서는 저조도 영상의 색 복원을 위한 톤 매핑 및 색 항등성 기법에 대해 분석한다. 톤 매핑 기법은 저조도 영상의 밝기를 개선해 색 항등성 기법의 적용을 가능하도록 하기 위해 사용되며, 이후 다양한 색 항등성 기법을 밝기 조절된 저조도 영상에 적용해 색 복원에 적합 여부를 판단한다.

  • PDF

A Study on Low-Light Image Enhancement Technique for Improvement of Object Detection Accuracy in Construction Site (건설현장 내 객체검출 정확도 향상을 위한 저조도 영상 강화 기법에 관한 연구)

  • Jong-Ho Na;Jun-Ho Gong;Hyu-Soung Shin;Il-Dong Yun
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.208-217
    • /
    • 2024
  • There is so much research effort for developing and implementing deep learning-based surveillance systems to manage health and safety issues in construction sites. Especially, the development of deep learning-based object detection in various environmental changes has been progressing because those affect decreasing searching performance of the model. Among the various environmental variables, the accuracy of the object detection model is significantly dropped under low illuminance, and consistent object detection accuracy cannot be secured even the model is trained using low-light images. Accordingly, there is a need of low-light enhancement to keep the performance under low illuminance. Therefore, this paper conducts a comparative study of various deep learning-based low-light image enhancement models (GLADNet, KinD, LLFlow, Zero-DCE) using the acquired construction site image data. The low-light enhanced image was visually verified, and it was quantitatively analyzed by adopting image quality evaluation metrics such as PSNR, SSIM, Delta-E. As a result of the experiment, the low-light image enhancement performance of GLADNet showed excellent results in quantitative and qualitative evaluation, and it was analyzed to be suitable as a low-light image enhancement model. If the low-light image enhancement technique is applied as an image preprocessing to the deep learning-based object detection model in the future, it is expected to secure consistent object detection performance in a low-light environment.

Convergence research of low-light image enhancement method and vehicle recorder (영역 분할과 로컬 히스토그램을 이용한 저조도 환경의 영상 향상 방법과 차량 블랙박스 융합)

  • Hwang, Woo-Sung;Choi, Myung-Ryul
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.1-6
    • /
    • 2016
  • In this paper, we propose an image enhancement method for vehicle recorder by dividing the images into sub-images and finding local histograms of the sub-images. The proposed method includes the following steps. Firstly, the input image is divided into ($N{\times}M$) pieces. And the sub-images are used to make groups using the adjacent piece-images (eg. piece-imagei,j, piece-imagei,j+1, piece-imagei+1,j and piece-imagei+1,j+1). Secondly, the contrast enhancement processes are executed using the local histogram of the sub-images. Finally, overall image is reconstructed by using a transfer function that reflects the characteristics of the sub-image. The proposed method might achieve more enhanced images for vehicle recorder by suppressing excessive image contrast.

Edge Detection based on Contrast Analysis in Low Light Level Environment (저조도 환경에서 명암도 분석 기반의 에지 검출)

  • Park, Hwa-Jung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.437-440
    • /
    • 2022
  • In modern society, the use of the image processing field is increasing rapidly due to the 4th industrial revolution and the development of IoT technology. In particular, edge detection is widely used in various fields as an essential preprocessing process in image processing applications such as image classification and object detection. Conventional methods for detecting an edge include a Sobel edge detection filter, a Roberts edge detection filter, a Prewitt edge detection filter, Laplacian of Gaussian (LoG), and the like. However, existing methods have the disadvantage of showing somewhat insufficient performance of edge detection characteristics in a low-light level environment with low contrast. Therefore, this paper proposes an edge detection algorithm based on contrast analysis to increase edge detection characteristics even in low-light level environments.

  • PDF

Color Noise Detection and Image Restoration based on low Illumination environment (저조도 환경 기반 컬러 노이즈 검출 및 영상 복원)

  • Oh, Gyoheak;Lee, Jaelin;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.241-243
    • /
    • 2020
  • 저조도 환경에서 획득한 CCTV 컬러 영상은 품질이 좋지 않으므로, 일정 조도 이하의 저조도에서 CCTV 는 근적외선을 이용하여 회색조 영상을 획득한다. 본 논문에서는 저조도에서 획득한 근적외선 영상을 이용한 물체 검출 및 GAN 을 통해 재구성된 컬러 영상에 생기는 컬러 잡음을 제거하는 방법을 제안한다. 기존의 재구성된 컬러 영상의 PSNR 측면에서 22.5dB 가 나왔으나, 영상 합성을 통해 컬러 노이즈를 제거한 영상의 PSNR 은 34dB 가 나왔다. 본 논문은 컬러 노이즈를 제거하면서 원래의 색의 유지가 제대로 이루어 졌는지는 주관적인 평가 방법을 통해 확인하였다.

  • PDF

Low Illumination CCTV Color Image Reconstruction Using VIS-NIR Image Separation Based on GAN (CCTV 환경 저조도 영상의 GAN 기반 가시광선-적외선 영상 분리 및 복원)

  • Oh, Gyoheak;Lee, Jaelin;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.175-176
    • /
    • 2019
  • 보안 시스템의 중요성이 늘어남에 따라 열악한 CCTV 영상 환경에서의 범죄 예방 및 검거의 중요성이 늘어나고 있다. 본 논문은 CCTV의 제약 환경에 맞는 데이터 취득, 근적외선 및 가시영역 혼합 영상의 분리 및 복원 방법을 제안한다. 데이터 취득 및 학습시킨 데이터의 성능은 PSNR 방법을 이용해 비교하였고, 저조도 영역의 근적외선과 가시영역의 분리 성능은 34dB 이상이 나왔다. 색 복원은 PSNR 측면에서는 22.5dB가 나왔고, 저조도 영역의 분리 성능과 비교하여 낮은 성능을 기록하다. 색복원의 평가 정도는 원본 영상과 주관적 평가방법을 사용하여 비교하였다.

  • PDF

A Study on Image Noise Reduction Technique for Low Light Level Environment (저조도 환경의 영상 잡음제거 기술에 관한 연구)

  • Lee, Ho-Cheol;Namgung, Jae-Chan;Lee, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Recent advance of digital camera results in that image signal processing techniques are widely adopted to railroad security management. However, due to the nature of railroad management many images are acquired in low light level environment such as night scenes. The lack of light causes lots of noise in the image, which degrades image quality and causes errors in the next processes. 3D noise reducing techniques produce better results by using consecutive sequence of images. On the other hand, they cause degradation such as motion blur if there are motions in the sequence. In this paper, we use an adaptive weight filter to estimate more accurate motions and use the result of the adaptive filter to 3D result to improve objective and subjective mage quality.

Image Enhancement of Image Intensifying Device in Extremely Low-Light Levels using Multiple Filters and Anisotropic Diffusion (다중필터와 이방성 확산을 이용한 극 저조도 조건에서의 미광증폭장비 영상 개선)

  • Moon, Jin-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.36-41
    • /
    • 2018
  • An image intensifying device is equipment that makes weak objects visible in a dark environment, such as making nighttime bright enough to let objects be visually observed. It is possible to obtain a clear image by amplifying the light in the presence of a certain amount of weak light. However, in an extremely low-light environment, where even moonlight is not present, there is not enough light to amplify anything, and the sharpness of the screen deteriorates. In this paper, a method is proposed to improve image quality by using multiple filters and anisotropic diffusion for output noise of the image-intensifying device in extreme low-light environments. For the experiment, the output of the image-intensifying device was obtained under extremely low-light conditions, and signal processing for improving the image quality was performed. The configuration of the filters for signal processing uses anisotropic diffusion after applying a median filter and a Wiener filter for effective removal of salt-and-pepper noise and Gaussian noise, which constitute the main noise appearing in the image. Experimental results show that the improvement visually enhanced image quality. Both peak signal-to-noise ratio (PSNR) and SSIM, which are quantitative indicators, show improved values.