• Title/Summary/Keyword: 저장시스템

Search Result 8,019, Processing Time 0.038 seconds

Application of CBM-CFS3 Model to Assess Carbon Stock and Age Class Changes Over Long Term Forest Planning in a Korea's National Forest (산림탄소축적을 고려한 국유림 장기경영계획 수립을 위한 CBM-CFS3 모델의 적용)

  • Jang, Kwangmin;Won, Hyun-Kyu;Kim, Young-Hwan;Tak, Kwang-IL;Shin, Man Yong;Lee, Kyeonghak
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.591-597
    • /
    • 2011
  • Forest carbon stock changes in a national forest were assessed by CBM-CFS3 model with different management scenarios to support decision making for a long term forest planning. Management scenarios were composed with 4 different levels of timber harvesting - current harvesting level (scenario1), 30% increment in each period (scenario2), 3 times increment (scenario3), and 5 times increment (scenario4). For each scenarios, changes in total carbon stocks, carbon stocks of each carbon pools, carbon stocks of harvested wood products (HWP) and age class structure were estimated over 100-year planning horizon. The estimated total carbon stock including HWP at the end of final period (100 years) was 433.1 tC/ha under scenario 1, but the age class structure has skewed right to the upper classes, which is not desirable for sustainable forest management. Under the scenario 4, however, the total carbon stock decrease to 385.5 tC/ha and the area of old growth forest show a significant decline. The estimated total carbon stock under scenario 2 and 3 were 411.7 tC/ha and 410.5 tC/ha respectively, and it was able to maintain the initial level of the forest carbon stocks during the planning horizon. Also the age class structures under the scenario 2 and 3 were evenly distributed from class 1 to class 8. Overall, scenario 2 and 3 were the most acceptable forest management options, in terms of carbon stock changes and age class structure.

Musculoskeletal Injuries by Weapons in Korean Soldiers: Four-Year Follow-Up (총기 및 폭발물에 의한 군인의 근골격계 손상: 최근 4년간 분석)

  • Yang, Hanbual;Hwang, Il-Ung;Song, Daeguen;Moon, Gi Ho;Lee, Na Rae;Kim, Kyoung-Nam
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.3
    • /
    • pp.234-244
    • /
    • 2021
  • Purpose: To date, studies of firearm and explosive injuries in the Korean military have been limited compared to its importance. To overcome this, this study examined the characteristics of musculoskeletal damages in soldiers who have suffered firearm and explosive injuries over the past four years. Materials and Methods: From January 2015 to July 2019, military forces who had suffered musculoskeletal injuries from firearms or explosive substances were included. The medical records and radiographs were reviewed retrospectively, and telephone surveys about Short Musculoskeletal Functional Assessment (SMFA) for this group were conducted. To compare the functional outcomes, statistical analysis was performed using a t-test for the types of weapons, and ANOVA for others. Results: Of the 61 patients treated for firearms and explosives injuries, 30 patients (49.2%) were included after undergoing orthopedic treatment due to musculoskeletal injury. The average age at injury was 26.4 years old (21-52 years old). The number of officers and soldiers was similar. Eleven were injured by gunshot and 19 by an explosive device. Sixteen were treated in the Armed Forces Capital Hospital and 10 at private hospitals. More than half of the 16 patients (53.3%) with a fracture had multiple fractures. The most common injury site was the hand (33.3%), followed by the lower leg (30.0%). There were 14 patients (46.7%) with Gustilo-Anderson classification 3B or higher who required a soft tissue reconstruction. Fifteen patients agreed to join the SMFA survey for the functional outcomes. Between officers and soldiers, officers had better scores in the Bother Index compared to soldiers (p=0.0045). Patients treated in the Armed Forces Capital Hospital had better scores in both the Dysfunction and Bother Index compared to private hospitals (p=0.0008, p=0.0149). Conclusion: This is the first study to analyze of weapons injuries in the Korean military. As a result of the study, the orthopedic burden was high in the treating patients with military weapon injuries. In addition, it is necessary to build a military trauma registry, including firearm and explosive injuries, for trauma treatment evaluation and development of military trauma system.

Evaluation of bias and uncertainty in snow depth reanalysis data over South Korea (한반도 적설심 재분석자료의 오차 및 불확실성 평가)

  • Jeon, Hyunho;Lee, Seulchan;Lee, Yangwon;Kim, Jinsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.543-551
    • /
    • 2023
  • Snow is an essential climate factor that affects the climate system and surface energy balance, and it also has a crucial role in water balance by providing solid water stored during the winter for spring runoff and groundwater recharge. In this study, statistical analysis of Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and ERA5-Land snow depth data were used to evaluate the applicability in South Korea. The statistical analysis between the Automated Synoptic Observing System (ASOS) ground observation data provided by the Korea Meteorological Administration (KMA) and the reanalysis data showed that LDAPS and ERA5-Land were highly correlated with a correlation coefficient of more than 0.69, but LDAPS showed a large error with an RMSE of 0.79 m. In the case of MERRA-2, the correlation coefficient was lower at 0.17 because the constant value was estimated continuously for some periods, which did not adequately simulate the increase and decrease trend between data. The statistical analysis of LDAPS and ASOS showed high and low performance in the nearby Gangwon Province, where the average snowfall is relatively high, and in the southern region, where the average snowfall is low, respectively. Finally, the error variance between the four independent snow depth data used in this study was calculated through triple collocation (TC), and a merged snow depth data was produced through weighting factors. The reanalyzed data showed the highest error variance in the order of LDAPS, MERRA-2, and ERA5-Land, and LDAPS was given a lower weighting factor due to its higher error variance. In addition, the spatial distribution of ERA5-Land snow depth data showed less variability, so the TC-merged snow depth data showed a similar spatial distribution to MERRA-2, which has a low spatial resolution. Considering the correlation, error, and uncertainty of the data, the ERA5-Land data is suitable for snow-related analysis in South Korea. In addition, it is expected that LDAPS data, which is highly correlated with other data but tends to be overestimated, can be actively utilized for high-resolution representation of regional and climatic diversity if appropriate corrections are performed.

Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support Systems (인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축)

  • Seung-seob Kim;Dong Ho Lee;Min Woo Lee;So Yeon Kim;Jaeseung Shin;Jin‑Young Choi;Byoung Wook Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1196-1206
    • /
    • 2021
  • Purpose To construct a standard dataset of contrast-enhanced CT images of liver tumors to test the performance and safety of artificial intelligence (AI)-based algorithms for clinical decision support systems (CDSSs). Materials and Methods A consensus group of medical experts in gastrointestinal radiology from four national tertiary institutions discussed the conditions to be included in a standard dataset. Seventy-five cases of hepatocellular carcinoma, 75 cases of metastasis, and 30-50 cases of benign lesions were retrieved from each institution, and the final dataset consisted of 300 cases of hepatocellular carcinoma, 300 cases of metastasis, and 183 cases of benign lesions. Only pathologically confirmed cases of hepatocellular carcinomas and metastases were enrolled. The medical experts retrieved the medical records of the patients and manually labeled the CT images. The CT images were saved as Digital Imaging and Communications in Medicine (DICOM) files. Results The medical experts in gastrointestinal radiology constructed the standard dataset of contrast-enhanced CT images for 783 cases of liver tumors. The performance and safety of the AI algorithm can be evaluated by calculating the sensitivity and specificity for detecting and characterizing the lesions. Conclusion The constructed standard dataset can be utilized for evaluating the machine-learning-based AI algorithm for CDSS.

Spatio-Temporal Monitoring of Soil CO2 Fluxes and Concentrations after Artificial CO2 Release (인위적 CO2 누출에 따른 토양 CO2 플럭스와 농도의 시공간적 모니터링)

  • Kim, Hyun-Jun;Han, Seung Hyun;Kim, Seongjun;Yun, Hyeon Min;Jun, Seong-Chun;Son, Yowhan
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.2
    • /
    • pp.93-104
    • /
    • 2017
  • CCS (Carbon Capture and Storage) is a technical process to capture $CO_2$ from industrial and energy-based sources, to transfer and sequestrate impressed $CO_2$ in geological formations, oceans, or mineral carbonates. However, potential $CO_2$ leakage exists and causes environmental problems. Thus, this study was conducted to analyze the spatial and temporal variations of $CO_2$ fluxes and concentrations after artificial $CO_2$ release. The Environmental Impact Evaluation Test Facility (EIT) was built in Eumseong, Korea in 2015. Approximately 34kg $CO_2$ /day/zone were injected at Zones 2, 3, and 4 among the total of 5 zones from October 26 to 30, 2015. $CO_2$ fluxes were measured every 30 minutes at the surface at 0m, 1.5m, 2.5m, and 10m from the $CO_2$ releasing well using LI-8100A until November 13, 2015, and $CO_2$ concentrations were measured once a day at 15cm, 30cm, and 60cm depths at every 0m, 1.5m, 2.5m, 5m, and 10m from the well using GA5000 until November 28, 2015. $CO_2$ flux at 0m from the well started increasing on the fifth day after $CO_2$ release started, and continued to increase until November 13 even though the artificial $CO_2$ release stopped. $CO_2$ fluxes measured at 2.5m, 5.0m, and 10m from the well were not significantly different with each other. On the other hand, soil $CO_2$ concentration was shown as 38.4% at 60cm depth at 0m from the well in Zone 3 on the next day after $CO_2$ release started. Soil $CO_2$ was horizontally spreaded overtime, and detected up to 5m away from the well in all zones until $CO_2$ release stopped. Also, soil $CO_2$ concentrations at 30cm and 60cm depths at 0m from the well were measured similarly as $50.6{\pm}25.4%$ and $55.3{\pm}25.6%$, respectively, followed by 30cm depth ($31.3{\pm}17.2%$) which was significantly lower than those measured at the other depths on the final day of $CO_2$ release period. Soil $CO_2$ concentrations at all depths in all zones were gradually decreased for about 1 month after $CO_2$ release stopped, but still higher than those of the first day after $CO_2$ release stared. In conclusion, the closer the distance from the well and the deeper the depth, the higher $CO_2$ fluxes and concentrations occurred. Also, long-term monitoring should be required because the leaked $CO_2$ gas can remains in the soil for a long time even if the leakage stopped.

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

홍삼 유래 성분들의 면역조절 효능

  • Jo, Jae-Yeol
    • Food preservation and processing industry
    • /
    • v.8 no.2
    • /
    • pp.6-12
    • /
    • 2009
  • 면역반응은 외부 감염원으로부터 신체를 보호하고 외부감염원을 제거하고자 하는 주요항상성 유지기전의 하나이다. 이들 반응은 골수에서 생성되고 비장, 흉선 및 임파절 등에서 성숙되는 면역세포들에 의해 매개된다. 보통 태어나면서부터 얻어진 선천성 면역반응을 매개하는 대식세포, 수지상 세포 등과, 오랜기간 동안 감염된 다양한 면역원에 대한 경험을 토대로 얻어진 획득성 면역을 담당하는 T 임파구 등이 대표적인 면역세포로 알려져 있다. 다양한 면역질환이 최근 주요 사망률의 원인이 되고 있다. 최근, 암, 당뇨 및 뇌혈관질환 등이 생체에서 발생되는 급 만성염증에 의해 발생된다고 보고됨에 따라 면역세포 매개성 염증질환에 대한 치료제 개발을 서두르고 있다. 또한 암환자의 급격한 증가는 암발생의 주요 방어기전인 면역력 증강에 대한 요구들을 가중시키고 있다. 예로부터 사용되어 오던 고려인삼과 홍삼은 기를 보호하고 원기를 회복하는 명약으로 알려진 대표적인 우리나라 천연생약이다. 특별히, 홍삼은 단백질과 핵산의 합성을 촉진시키고, 조혈작용, 간기능 회복, 혈당강하, 운동수행 능력증대, 기억력 개선, 항피로작용 및 면역력 증대에 매우 효과가 좋은 것으로 보고되고 있다. 홍삼에 관한 많은 연구에 비해, 현재까지 홍삼이 면역력 증강에 미치는 효과에 대한 분자적 수준에서의 연구는 매우 미미한 것으로 확인되어져 있다. 홍삼의 투여는 NK 세포나 대식세포의 활성이 증가하고 항암제의 암세포 사멸을 증가시키는 것으로 확인되어졌다. 현재까지 알려진 주요 면역증강 성분은 산성다당류로 보고되었다. 또 한편으로 일부 진세노사이드류에서 항염증 효능이 확인되어졌으며, 이를 통해 피부염증 반응과 관절염에 대한 치료 효과가 있는 것으로 추측되고 있다 [본 연구는 KT&G 연구출연금 (2009-2010) 지원을 받아 이루어졌기에 이에 감사드린다]. 면역반응은 외부 감염물질의 침입으로 유도된 질병환경을 제거하고 수복하는 중요한 생체적 방어작용의 하나이다. 이들 과정은 체내로 유입된 미생물이나 미세화학물질들과 같은 독성물질을 소거하거나 파괴하는 것을 주요 역할로 한다. 외부로 부터 인체에 들어온 이물질에 대한 방어기전은 현재 두 가지 종류의 면역반응으로 구분해서 설명한다. 즉, 선천성 면역 반응 (innate immunity)과 후천성 면역 반응 (adaptive immunity)이 그것이다. 선천성 면역반응은 1) 피부나 점막의 표면과 같은 해부학적인 보호벽 구조와 2) 체온과 낮은 pH 및 chemical mediator (리소자임, collectin류) 등과 같은 생리적 방어구조, 3) phagocyte류 (대식세포, 수지상세포 및 호중구 등)에 의한 phagocytic/endocytic 방어, 그리고 4) 마지막으로 염증반응을 통한 감염에 저항하는 면역반응 등으로 구분된다. 후천성 면역반응은 획득성면역이라고도 불리고 특이성, 다양성, 기억 및 자기/비자기의 인식이라는 네 가지의 특징을 가지고 있으며, 외부 유입물질을 제거하는 반응에 따라 체액성 면역 반응 (humoral immune response)과 세포성 면역반응 (cell-mediated immune response)으로 구분된다. 체액성 면역은 침입한 항원의 구조 특이적으로 생성된 B cell 유래 항체와의 반응과 간이나 대식세포 등에서 합성되어 분비된 혈청내 보체 등에 의해 매개되는 반응으로 구성되어 있다. 세포성 면역반응은 T helper cell (CD4+), cytotoxic T cell (CD8+), B cell 및antigen presenting cell 중개를 통한 세포간 상호 작용에 의해 발생되는 면역반응이다. 선천성 면역반응의 하나인 염증은 우리 몸에서 가장 빈번히 발생되고 있는 방어작용의 하나이다. 예를 들면 감기에 걸렸을 경우, 환자의 편도선내 대식세포나 수지상세포류는 감염된 바이러스 단독 혹은 동시에 감염된 박테리아를 상대로 다양한 염증성 반응을 유도하게 된다. 또한, 상처가 생겼을 경우에도 감염원을 통해 유입된 병원성 세균과 주위조직내 선천성 면역담당 세포들 간의 면역학적 전투가 발생되게 된다. 이들 과정을 통해, 주위 세포나 조직이 손상되면, 즉각적으로 이들 면역세포들 (주로 phagocytes류)은 신속하게 손상을 극소화하고 더 나가서 손상된 부위를 원상으로 회복시키려는 일련의 염증반응을 유도하게 된다. 이들 반응은 우리가 흔히 알고 있는 발적 (redness), 부종 (swelling), 발열 (heat), 통증 (pain) 등의 증상으로 나타나게 된다. 즉, 손상된 부위 주변에 존재하는 모세혈관에 흐르는 혈류의 양이 증가하면서 혈관의 직경이 늘어나게 되고, 이로 인한 조직의 홍반과, 부어 오른 혈관에 의해 발열과 부종이 초래되는 것이다. 확장된 모세혈관의 투과성 증가는 체액과 세포들이 혈관에서 조직으로 이동하게 하는 원동력이 되고, 이를 통해 축적된 삼출물들은 단백질의 농도를 높여, 최종적으로 혈관에 존재하는 체액들이 조직으로 더 많이 이동되도록 유도하여 부종을 형성시킨다. 마지막으로 혈관 내 존재하는 면역세포들은 혈판 내벽에 점착되고 (margination), 혈관벽의 간극을 넓히는 역할을 하는 히스타민 (histamine)이나 일산화질소(nitric oxide : NO), 프로스타그린딘 (prostagladins : PGE2) 및 류코트리엔 (leukotriens) 등과 같은 chemical mediator의 도움으로 인해 혈관벽 사이로 삼출하게 되어 (extravasation), 손상된 부위로 이동하여 직접적인 외부 침입 물질의 파괴나 다른 면역세포들을 모으기 위한 cytokine (tumor necrosis factor [TNF]-$\alpha$, interleukin [IL]-1, IL-6 등) 혹은 chemokine (MIP-l, IL-8, MCP-l등)의 분비 등을 수행함으로써 염증반응을 매개하게 된다. 염증과정시 발생되는 여러 mediator 중 PGE2나 NO 및 TNF-$\alpha$ 등은 실험적 평가가 용이하여 이들 mediator 자체나 생성관련효소 (cyclooxygenase [COX] 및 nitric oxide synthase [NOS] 등)들은 현재항염증 치료제의 개발 연구시 주요 표적으로 연구되고 있다. 염증 반응은 지속기간에 따라 크게 급성염증과 만성염증으로 나뉘며, 삼출물의 종류에 따라서는 장액성, 섬유소성, 화농성 및 출혈성 염증 등으로 구분된다. 급성 염증 (acute inflammation)반응은 수일 내지 수주간 지속되는 일반적인 염증반응이라고 볼 수 있다. 국소반응은 기본징후인 발열과 발적, 부종, 통증 및 기능 상실이 특징적이며, 현미경적 소견으로는 혈관성 변화와 삼출물 형성이 주 작용이므로 일명 삼출성 염증이라고 한다. 만성 염증 (chronic inflammation)은, 급성 염증으로부터 이행되거나 만성으로 시작된다. 염증지속 기간은 보통 4주 이상 장기화 된다. 보통 염증의 경우에는 염증 생성 cytokine인 Th1 cytokine (IL-2, interferone [IFN]-$\gamma$ 및 TNF-$\alpha$ 등)의 생성 후, 거의 즉각적으로 항 염증성 cytokine인 Th2 cytokine(IL-4, IL-6, IL-10 및 transforming growth factor [TGF]-$\beta$ 등)이 생성되어 정상반응으로 회복된다. 그러나, 어떤 원인에서든 면역세포에 의한 염증원 제거 반응이 문제가 되면, 만성염증으로 진행된다. 이 반응에 주로 작용을 하는 염증세포로는 단핵구와 대식세포, 림프구, 형질세포 등이 있다. 암은 전세계적으로 사망률 1위의 원인이 되는 면역질환의 하나이다. 산화적 스트레스나 자외선 조사 혹은 암유발 물질들에 의해 염색체내 protooncogene, tumor-suppressor gene 혹은 DNA repairing gene의 일부 DNA의 돌연변이 혹은 결손 등이 발행되면 정상세포는 암화과정을 시작하게 된다. 양성세포 수준에서 약 5에서 10여년 후 악성수준의 암세포가 생성되게 되면 이들 세포는 새로운 환경을 찾아 전이하게 되는데 이를 통해 암환자들은 다양한 장기에 동인 오리진의 암세포들이 생성한 종양들을 가지게 된다. 이들 종양세포는 정상 장기의 기능을 손상시켜며 결국 생명을 잃게 만든다. 이들 염색체 수준에서의 돌연변이 유래 암세포는 거의 대부분이 체내 면역시스템에 의해 사멸되는 것으로 알려져 있다. 그러나 계속되는 스트레스나 암유발 물질의 노출은 체내 면역체계를 파괴하면서 최후의 방어선을 무너뜨리면서 암발생에 무방비 상태를 만들게 된다. 이런 이유로 체내 면역시스템의 정상적 가동 및 증강을 유도하게 하는 전략이 암예방시 매우 중요한 표적으로 인식되면서 다양한 형태의 면역증강 물질 개발을 시도하고 있다. 인삼은 두릅나무과의 여러해살이 풀로써, 오랜동안 한방 및 민간에서 원기를 회복시키고, 각종 질병을 치료할 수단으로 사용되고 있는 대표적인 전통생약이다. 예로부터 불로(不老), 장생(長生), 익기(益氣), 경신(經身)의 명약으로 구전되어졌는데, 이는 약 2천년 전 중국의 신농본초경(神農本草經)에서 "인삼은 오장(五腸)을 보하고, 정신을 안정시키고, 혼백을 고정하며 경계를 멈추게 하고, 외부로부터 침입하는 병사를 제거하여주며, 눈을 밝게 하고 마음을 열어 더욱 지혜롭게 하고 오랫동안 복용하면 몸이 가벼워지고 장수한다" 라고 기술되어있는 데에서 유래한 것이다. 다양한 연구를 통해 우리나라에서 생산되는 고려인삼 (Panax ginseng)이 효능 면에서 가장 탁월한 것으로 알려져 있으며 특별이 고려인삼으로부터 제조된 고려홍삼은 전세계적으로도 그 효능이 우수한 것으로 보고되어 있다. 대부분의 홍삼 약효는 dammarane계열의 triterpenoid인 ginsenosides라고 불리는 인삼 saponin에 의해 기인된 것으로 알려져 있다. 이들 화합물군의 기본 골격에 따라, protopanaxadiol (PD)계 (22종) 및 protopanaxatriol (PT)계 (10종)으로 구분되고 있다 (표 1). 실험적 접근을 통해 인삼의 약리작용 이해를 위한 다양한 노력들이 경주되고 있으나, 여전히 많은 부분에서 충분히 이해되고 있지 않다. 그러나, 현재까지 연구된 인삼의 약리작용 관련 연구들은 심혈관, 당뇨, 항암 및 항스트레스 등과 같은 분야에서 인삼효능이 우수한 것으로 보고하고 있다. 그러나 면역조절 및 염증현상과 관련된 최근 연구결과들은 많지 않으나, 향후 다양하게 연구될 효능부분으로 인식되고 있다.

  • PDF

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.

Efficient Topic Modeling by Mapping Global and Local Topics (전역 토픽의 지역 매핑을 통한 효율적 토픽 모델링 방안)

  • Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.69-94
    • /
    • 2017
  • Recently, increase of demand for big data analysis has been driving the vigorous development of related technologies and tools. In addition, development of IT and increased penetration rate of smart devices are producing a large amount of data. According to this phenomenon, data analysis technology is rapidly becoming popular. Also, attempts to acquire insights through data analysis have been continuously increasing. It means that the big data analysis will be more important in various industries for the foreseeable future. Big data analysis is generally performed by a small number of experts and delivered to each demander of analysis. However, increase of interest about big data analysis arouses activation of computer programming education and development of many programs for data analysis. Accordingly, the entry barriers of big data analysis are gradually lowering and data analysis technology being spread out. As the result, big data analysis is expected to be performed by demanders of analysis themselves. Along with this, interest about various unstructured data is continually increasing. Especially, a lot of attention is focused on using text data. Emergence of new platforms and techniques using the web bring about mass production of text data and active attempt to analyze text data. Furthermore, result of text analysis has been utilized in various fields. Text mining is a concept that embraces various theories and techniques for text analysis. Many text mining techniques are utilized in this field for various research purposes, topic modeling is one of the most widely used and studied. Topic modeling is a technique that extracts the major issues from a lot of documents, identifies the documents that correspond to each issue and provides identified documents as a cluster. It is evaluated as a very useful technique in that reflect the semantic elements of the document. Traditional topic modeling is based on the distribution of key terms across the entire document. Thus, it is essential to analyze the entire document at once to identify topic of each document. This condition causes a long time in analysis process when topic modeling is applied to a lot of documents. In addition, it has a scalability problem that is an exponential increase in the processing time with the increase of analysis objects. This problem is particularly noticeable when the documents are distributed across multiple systems or regions. To overcome these problems, divide and conquer approach can be applied to topic modeling. It means dividing a large number of documents into sub-units and deriving topics through repetition of topic modeling to each unit. This method can be used for topic modeling on a large number of documents with limited system resources, and can improve processing speed of topic modeling. It also can significantly reduce analysis time and cost through ability to analyze documents in each location or place without combining analysis object documents. However, despite many advantages, this method has two major problems. First, the relationship between local topics derived from each unit and global topics derived from entire document is unclear. It means that in each document, local topics can be identified, but global topics cannot be identified. Second, a method for measuring the accuracy of the proposed methodology should be established. That is to say, assuming that global topic is ideal answer, the difference in a local topic on a global topic needs to be measured. By those difficulties, the study in this method is not performed sufficiently, compare with other studies dealing with topic modeling. In this paper, we propose a topic modeling approach to solve the above two problems. First of all, we divide the entire document cluster(Global set) into sub-clusters(Local set), and generate the reduced entire document cluster(RGS, Reduced global set) that consist of delegated documents extracted from each local set. We try to solve the first problem by mapping RGS topics and local topics. Along with this, we verify the accuracy of the proposed methodology by detecting documents, whether to be discerned as the same topic at result of global and local set. Using 24,000 news articles, we conduct experiments to evaluate practical applicability of the proposed methodology. In addition, through additional experiment, we confirmed that the proposed methodology can provide similar results to the entire topic modeling. We also proposed a reasonable method for comparing the result of both methods.

Color-related Query Processing for Intelligent E-Commerce Search (지능형 검색엔진을 위한 색상 질의 처리 방안)

  • Hong, Jung A;Koo, Kyo Jung;Cha, Ji Won;Seo, Ah Jeong;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.109-125
    • /
    • 2019
  • As interest on intelligent search engines increases, various studies have been conducted to extract and utilize the features related to products intelligencely. In particular, when users search for goods in e-commerce search engines, the 'color' of a product is an important feature that describes the product. Therefore, it is necessary to deal with the synonyms of color terms in order to produce accurate results to user's color-related queries. Previous studies have suggested dictionary-based approach to process synonyms for color features. However, the dictionary-based approach has a limitation that it cannot handle unregistered color-related terms in user queries. In order to overcome the limitation of the conventional methods, this research proposes a model which extracts RGB values from an internet search engine in real time, and outputs similar color names based on designated color information. At first, a color term dictionary was constructed which includes color names and R, G, B values of each color from Korean color standard digital palette program and the Wikipedia color list for the basic color search. The dictionary has been made more robust by adding 138 color names converted from English color names to foreign words in Korean, and with corresponding RGB values. Therefore, the fininal color dictionary includes a total of 671 color names and corresponding RGB values. The method proposed in this research starts by searching for a specific color which a user searched for. Then, the presence of the searched color in the built-in color dictionary is checked. If there exists the color in the dictionary, the RGB values of the color in the dictioanry are used as reference values of the retrieved color. If the searched color does not exist in the dictionary, the top-5 Google image search results of the searched color are crawled and average RGB values are extracted in certain middle area of each image. To extract the RGB values in images, a variety of different ways was attempted since there are limits to simply obtain the average of the RGB values of the center area of images. As a result, clustering RGB values in image's certain area and making average value of the cluster with the highest density as the reference values showed the best performance. Based on the reference RGB values of the searched color, the RGB values of all the colors in the color dictionary constructed aforetime are compared. Then a color list is created with colors within the range of ${\pm}50$ for each R value, G value, and B value. Finally, using the Euclidean distance between the above results and the reference RGB values of the searched color, the color with the highest similarity from up to five colors becomes the final outcome. In order to evaluate the usefulness of the proposed method, we performed an experiment. In the experiment, 300 color names and corresponding color RGB values by the questionnaires were obtained. They are used to compare the RGB values obtained from four different methods including the proposed method. The average euclidean distance of CIE-Lab using our method was about 13.85, which showed a relatively low distance compared to 3088 for the case using synonym dictionary only and 30.38 for the case using the dictionary with Korean synonym website WordNet. The case which didn't use clustering method of the proposed method showed 13.88 of average euclidean distance, which implies the DBSCAN clustering of the proposed method can reduce the Euclidean distance. This research suggests a new color synonym processing method based on RGB values that combines the dictionary method with the real time synonym processing method for new color names. This method enables to get rid of the limit of the dictionary-based approach which is a conventional synonym processing method. This research can contribute to improve the intelligence of e-commerce search systems especially on the color searching feature.