• Title/Summary/Keyword: 저온성 광물

Search Result 39, Processing Time 0.21 seconds

Synthetic study of Zeolites from Some Glassy Rocks (I) L Low-Temperature Hydrothermal Synthesis of Zeolites Na-P, Na-X, and Na-A (유리질 암석으로부터 제올라이트 합성에 광한 연구 (I) : Na-P, Na-X 및 Na-A 제올라이트의 저온 수열 합성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.7-17
    • /
    • 1990
  • 화산 유리질 암석을 출발 물질로 사용하여 저온 ($80^{\circ}C$)에서 수열 처리하여 Na-P Na-X 및 Na-A 제올라이트를 합성하였다. 합성과정은 (1) 유리질 분말 시료와 알칼리 용액과의 용해.변질 반응에 의한 1차적인 Na-P의 합성 방식과 (2) 여기서 잔류된 규산질 모액에 Al(OH)3나 NaAlO2의 수용액을 공급하여 보다 고순도의 Na-P, Na-X 및 Na-A를 효과적으로 합성할 수 있었다. 원암의 암상과 조성은 제올라이트들의 화학 조성과 순도 및 백색도같은 물리적 특성에는 영향을 주지만, 합성된 제올라이트의 광물종을 규제하는 주된 요인은 아닌 것으로 해석된다. 합성된 제올라이트의 광물상은 반응 용액의 pH, Al(OH)4 및 Na+에 대한 농도 조건에 주로 의존되는 경향을 나타낸다. 또한 화산 유리질 암석을 제올라이트 합성원료로 활용하는 데에 있어서 (2)와 같음 합성 방안이 보완적으로 시행되면 그 생산성과 효율성을 제고시킬 수 있을 것으로 여겨진다.

  • PDF

Mineralogy and Chemical Compositions of Dangdu Pb-Zn Deposit (당두 연-아연 광상의 산출광물과 화학조성)

  • Lim, Onnuri;Yu, Jaehyung;Koh, Sang Mo;Heo, Chul Ho
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.123-140
    • /
    • 2013
  • The Dangdu Pb-Zn deposit is located at approximately 10 km south of Jecheon, Korea. Geology of Dangdu deposit area consists of Pre-cambrian metamorphic rocks, Ordovician sedimentary rocks, Jurassic and Cretaceous igneous rocks. The ore deposit is developed along the fracture trending $N20{\sim}40^{\circ}W$ in Ordovician limestone and is considered to be a skarn type ore deposit. The shape of ore bodies developed in the Dangdu ore deposit can be divided into lens-form(two ore bodies of -30 m level adit and one ore body of -63 m level adit) and pocket-form developed in -30 m level adit. Ore minerals observed in the ore deposits are magnetite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, cosalite, marcasite, hessite, native Bi and bismuthinite. Chemical composition of sphalerite ranges FeS 14.14~18.08 mole%, CdS 0.44~0.70 mole%, MnS 0.52~1.13, 1.53~2.09 mole%. Galena contains a small amount of silver with an average of 0.54 wt.%. An average composition of cosalite is Ag 2.43 wt.%, Bi 44.36 wt.%, Pb 35.05 wt.% which results the chemical formula of cosalite as $Pb_{1.7}Bi_{2.1}Ag_{0.2}S_5$. Skarn minerals consist of epidote, garnet, pyroxene, tremolite, quartz and calcite. The zoning pattern of the ore deposit can be subdivided into epidote-clinopyroxene zone, epidote-clinopyroxene-chlorite zone and epidote-garnet-clinopyroxene zone from the central part of the ore body towards the wall rocks. The chemical composition of garnet shows an increasing trend of grossular from epidote-clinopyroxene zone to epidote-garnet-clinopyroxene zone. Clinopyroxene occurs as a solid solution of diopside and hedenbergite, and the ratio of johannsenite increases from epidote-clinopyroxene zone to epidote-clinopyroxene-chlorite and epidote-garnet-clinopyroxene zones. The mineralization of the ore deposit is considered to be one stage event which can be separated into early skarn mineralization stage, middle ore mineralization stage and late low temperature mineralization stage. The temperature estimation from the low temperature mineralization range from $125{\sim}300^{\circ}C$ which is considered to be representing the temperature of late mineralization.

Mineralogical Characteristics of Hydrothermal Laumontite and Adularia in the Breccia Zone of a Fault, Yangbuk-myeon, Gyeongju and Implications for Fault Activity (경주시 양북면 단층각력대에서 산출하는 로몬타이트와 아듈라리아의 광물학적 특징과 후기 단층활동)

  • Choo, Chang-Oh;Jang, Yun-Deuk;Chang, Chun-Joong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.23-36
    • /
    • 2012
  • Morphological and mineralogical characteristics of laumontite and adularia in the breccia zone in a fault, Yangbuk-myeon, Gyeongju, Korea suggest that they formed by reaction with hydrothermal alteration related to fault activity. Laumontite commonly occurring in the breccia zone is related to the presence of hydrothermal fluids bearing alkaline elements in the zone. Laumonite is characterized by elongated columnar form with aspect ratio varying 5~10. Laumontite and adularia whose characteristic euhedral forms are indicative of the latest product formed as rapid precipitation from fluids or replacements of Ca-plagioclase. Hydrothermal fluids reacted with intensively fractured granite, typical with high permeability, leached alkaline elements such as Ca, K, allowing laumontite and adularia to be precipitated under neutral to weak alkaline conditions. It is noteworthy that the formation process and genesis of low temperature minerals such as laumontite and adularia are very similar to those formed by wallrock alteration or hydrothermal alteration that occurred in epithermal deposits. Taking into account its characteristic morphology and chemistry, authigenic K-feldspar that commonly forms at low temperature in many fault zones must be adularia.

Mineralogical Characteristics of Tachylite occurring in Basic Dike, Basaltic Agglomerate Formation, Ulleung Island and Its Implications of Volcanic Activity (울릉도의 하부층 현무암질 집괴암 층내 염기성 암맥에서 산출되는 타킬라이트의 광물학적 특성과 화산학적 의미)

  • Bae, Su-Gyeong;Choo, Chang-Oh;Jang, Yun-Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.63-76
    • /
    • 2012
  • Tachylite, black basaltic glass formed by the rapid cooling of molten basalt, locally occurs at the Basaltic Agglomerate Formation (BAF), the lowest formation of Ulleung Island. The purposes of this study are to characterize the occurrence and mineralogy of tachylite and to elucidate its formation condition, with emphasis on its fracture pattern, which can serve as implications for the early volcanic activity of Ulleung Island. To this end, we investigated the occurrence pattern of tachylite in the field and carried out mineralogical analyses using optical microscope, XRD, EPMA, and SEM. Tachylite occurs at the chilled margin of basic dikes which are distributed in Naesujeon, Dodong and Jeodong seasides, Turtle Rock, and Yaerimwon, whose widths vary from several cm to 10 cm. It is evident that the outer surface of tachylite is dense and smooth, whereas the inner surface, if fractured, is characterized by conchoidal fracture. The matrix of tachylite consists of amorphous, glass and some fine-grained phenocrysts present in tachylite include biotite, anorthoclase, sanidine, plagioclase, hornblende, and Fe-Ti oxides. The fracture patterns characteristic of tachylite are subrounded, oval, or less commonly polygonal, bounded by joints to form globule or lump. Taking into account texture and mineralogy, tachylite is interpreted to have undergone little subsequent alteration at low temperature via hydration or hydrolysis that could form clay minerals after it was formed. Because tachylite with peculiar fractures occurs as dikes in a close association with BAF, its presence is considered as reliable evidence that when tachylite formed, the most part of BAF was still under subaqueous conditions, or at least saturated with seawater.

Temporal Variations of Ore Mineralogy and Sulfur Isotope Data from the Boguk Cobalt Mine, Korea: Implication for Genesis and Geochemistry of Co-bearing Hydrothermal System (보국 코발트 광상의 산출 광물종 및 황동위원소 조성의 시간적 변화: 함코발트 열수계의 성인과 지화학적 특성 고찰)

  • Yun, Seong-Taek;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.289-301
    • /
    • 1997
  • The Boguk cobalt mine is located within the Cretaceous Gyeongsang Sedimentary Basin. Major ore minerals including cobalt-bearing minerals (loellingite, cobaltite, and glaucodot) and Co-bearing arsenopyrite occur together with base-metal sulfides (pyrrhotite, chalcopyrite, pyrite, sphalerite, etc.) and minor amounts of oxides (magnetite and hematite) within fracture-filling $quartz{\pm}actinolite{\pm}carbonate$ veins. These veins are developed within an epicrustal micrographic granite stock which intrudes the Konchonri Formation (mainly of shale). Radiometric date of the granite (85.98 Ma) indicates a Late Cretaceous age for granite emplacement and associated cobalt mineralization. The vein mineralogy is relatively complex and changes with time: cobalt-bearing minerals with actinolite, carbonates, and quartz gangues (stages I and II) ${\rightarrow}$ base-metal sulfides, gold, and Fe oxides with quartz gangues (stage III) ${\rightarrow}$ barren carbonates (stages IV and V). The common occurrence of high-temperature minerals (cobalt-bearing minerals, molybdenite and actinolite) with low-temperature minerals (base-metal sulfides, gold and carbonates) in veins indicates a xenothermal condition of the hydrothermal mineralization. High enrichment of Co in the granite (avg. 50.90 ppm) indicates the magmatic hydrothermal derivation of cobalt from this cooling granite stock, whereas higher amounts of Cu and Zn in the Konchonri Formation shale suggest their derivations largely from shale. The decrease in temperature of hydrothermal fluids with a concomitant increase in fugacity of oxygen with time (for cobalt deposition in stages I and II, $T=560^{\circ}C-390^{\circ}C$ and log $fO_2=$ >-32.7 to -30.7 atm at $350^{\circ}C$; for base-metal sulfide deposition in stage III, $T=380^{\circ}-345^{\circ}C$ and log $fO_2={\geq}-30.7$ atm at $350^{\circ}C$) indicates a transition of the hydrothermal system from a magmatic-water domination toward a less-evolved meteoric-water domination. Sulfur isotope data of stage II sulfide minerals evidence that early, Co-bearing hydrothermal fluids derived originally from an igneous source with a ${\delta}^{34}S_{{\Sigma}S}$ value near 3 to 5‰. The remarkable increase in ${\delta}^{34}S_{H2S}$ values of hydrothermal fluids with time from cobalt deposition in stage II (3-5‰) to base-metal sulfide deposition in stage III (up to about 20‰) also indicates the change of the hydrothermal system toward the meteoric water domination, which resulted in the leaching-out and concentration of isotopically heavier sulfur (sedimentary sulfates), base metals (Cu, Zn, etc.) and gold from surrounding sedimentary rocks during the huge, meteoric water circulation. We suggest that without the formation of the later, meteoric water circulation extensively through surrounding sedimentary rocks the Boguk cobalt deposits would be simple veins only with actinolite + quartz + cobalt-bearing minerals. Furthermore, the formation of the meteoric water circulation after the culmination of a magmatic hydrothermal system resulted in the common occurrence of high-temperature minerals with later, lower-temperature minerals, resulting in a xenothermal feature of the mineralization.

  • PDF

Mineralogical Characteristics of Fracture-Filling Minerals from the Deep Borehole in the Yuseong Area for the Radioactive Waste Disposal Project (방사성폐기물처분연구를 위한 유성지역 화강암내 심부 시추공 단열충전광물의 광물학적 특성)

  • 김건영;고용권;배대석;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.99-114
    • /
    • 2004
  • Mineralogical characteristics of fracture-filling minerals from deep borehole in the Yuseong area were studied for the radioactive waste disposal project. There are many fracture zones in the deep drill holes of the Yuseong granite, which was locally affected by the hydrothermal alteration. According to the results of hole rock analysis of drill core samples, $SiO_2$ contents are distinctly decreased, whereas $Al_2$$O_3$ and CaO contents and L.O.I. values are increased in the -90 m∼-130 m and -230 m∼-250 m zone, which is related to the formations of filling minerals. Fracture-filling minerals mainly consist of zeolite minerals (laumontite and heulandite), calcite, illite ($2M_1$ and 1Md polytypes), chlorite, epidote and kaolinite. The relative frequency of occurrence among the fracture-filling minerals is calcite zeolite mineral > illite > epidote chlorite kaolinite. Judging from the SEM observation and EPMA analysis, there is no systematic change in the texture and chemical composition of the fracture-filling minerals with depth. In the study area, low temperature hydrothermal alteration was overlapped with water-rock interactions for a long geological time through the fracture zone developed in the granite body. Therefore the further study on the origin and paragenesis of the fracture-filling minerals are required.

Comparative Anatomy of the Hydrothermal Alteration of Chonnam and Kyongsang Hydrothermal Clay Alteration Areas in Korea (전남 및 경상 열수변질 점토광상의 생성환경 비교)

  • Koh, Sang Mo;Chang, Ho Wan
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • Chonnam and Kyongsang clay alteration areas are distributed in volcanic fields of the Yuchon Group in late Cretaceous period. The host rock of the Chonnam alteration area is generally acidic and that of the Kyongsang alteration area is acidic to dominantly intermediate volcanics. The important difference of two alteration areas is source of fluid; the Chonnam alteration area is characterized by dominantly meteoric water and the Kyongsang alteration area is characterized by dominantly magmatic water. Accordingly, the high temperature minerals such as pyrophyllite and andalusite, and boron bearing minerals such as dumortierite and tourmaline are common in the Kyongsang alteration area. In contrast to this, the lower temperature minerals such as kaolin and alunite are common in the Chonnam alteration area. The mineralogical difference of two alteration areas were depended on the difference of the formation temperature of clay deposits. The other important geochemical difference is the chemistry of hydrothermal solution such as pH. The alteration of "acid-sulfate type" with alteration mineral assemblage of alunite-kaolin-quartz is dominant in the Chonnam alteration area, which was caused by the attack of strong acid and acid solution. In contrast to this, the that of "quartz-sericite type" with the mineral assemblage of sericite-quartz is dominant in the Kyongsang alteration area, which was caused by the attack of neutral or weak acid solution. Also, the Kyongsang and Chonnam alteration areas show the difference in structural setting; the Chonnam alteration area is commonly associated with silicic domes and the Kyongsang alteration area is commonly associated with calderas.

  • PDF

Applications of the Fast Grain Boundary Model to Cosmochemistry (빠른 입계 확산 수치 모델의 우주화학에의 적용)

  • Changkun Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • Diffusion is a powerful tool to understand geological processes recorded in terrestrial rocks as well as extraterrestrial materials. Since the diffusive exchange of elements or isotopes may have occurred differently in the solar nebula (high temperature and rapid cooling) and on the parent bodies (fluid-assisted thermal metamorphism at relatively low temperature), it is particularly important to model elemental or isotopic diffusion profiles within the mineral grains to better understand the evolution of the early solar system. A numerical model with the finite difference method for the fast grain boundary diffusion was established for the exchange of elements or isotopes between constituent minerals in a closed system. The fast grain boundary diffusion numerical model was applied to 1) 26Mg variation in plagioclase of an amoeboid olivine aggregate (AOA) from a CH chondrite and 2) Fe-Mg interdiffusion between chondrules, AOA, and matrix minerals in a CO chondrite. Equilibrium isotopic fractionation and equilibrium partitioning were also included in the numerical model, based on the assumption that equilibrium can be reached at the interfaces of mineral crystals. The numerical model showed that diffusion profiles observed in chondrite samples likely resulted from the diffusive exchange of elements or isotopes between the constituent minerals. This study also showed that the closure temperature is determined not only by the mineral with the slowest diffusivity in the system, but also strongly depends on the constituent mineral abundances.

25-686 K 온도범위에서의 InSb 유전율 함수와 전이점의 온도의존성 연구

  • Hwang, Sun-Yong;Kim, Tae-Jung;Yun, Jae-Jin;Choe, Jun-Ho;Kim, Jun-Yeong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.405-405
    • /
    • 2012
  • InSb는 높은 전자이동도와 낮은 밴드갭을 가지고 있어 저전력 고효율의 고주파소자 및 비선형 광소자에 적합한 물질이다. 특히 InSb 기반 소자들은 전자-포논효과의 영향을 덜 받는 저온에서 고감도 소자로도 사용되고 있는데, 소자의 최적합 설계와 제작시의 실시간 성장제어를 위해서는 넓은 온도범위에서의 InSb의 광물성이 필요하다. 분광타원편광분석법(ellipsometry)은 물질의 광특성인 유전율 함수를 정확하게 측정 할 수 있은 기술로써, InSb 에 대한 유전율 함수는 많은 연구를 통해 잘 알려져 있다. 그러나, 온도변화에 대한 연구로는 100-700 K, 1.2-5.6 eV의 제한된 온도와 분광영역에서만 이루어졌다. 본 연구에서는 보다 확장된 온도범위(25-686 K), 광역 에너지 범위 (0.74-6.5 eV)에서 분광타원편광분석 연구를 수행하였다. 그 결과 저온에서의 전자-포논 효과의 감소로 인한 청색천이와 보다 명확한 전자전이점들의 값을 얻었다. 특히, 100 K 까지의 이전 연구에서는 구분할 수 없었던 $E_2'$ 전이점을 본 연구의 25 K 의 유전율 함수에서 명확히 구분할 수 있었고, 고에너지 영역의 $E_1'+{\Delta}_1+{\Delta}_1'$ 전이점의 온도의존성을 처음으로 연구하였다. 본 연구의 결과는 InSb 를 기반으로 한 광전자 소자의 개발 및 적용분야와 밴드갭 엔지니어링 분야에 많은 도움이 될 것으로 예상한다.

  • PDF

Production Characteristics and Post-depositional Influence of Iron Age Pottery from Chipyeongdong Site in Gwangju, Korea (광주 치평동 유적 출토 철기시대 토기의 제작특성과 매장환경 연구)

  • Jang, Sung-Yoon;Moon, Eun-Jung;Lee, Chan-Hee;Lee, Gi-Gil
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.157-167
    • /
    • 2012
  • This study aimed to interpret the provenance and firing temperature of pottery from Chipyeongdong site in Gwangju, Korea though mineralogical and geochemical methods and also investigated the post-depositional alteration of pottery in burial environments. It is also presumed that they were made of soils near the site because they have similar mineralogical composition and same geochemical evolution path. Based on the results of mineralogical analysis, the pottery samples are largely divided into 2 groups; $700^{\circ}C$ to $1,000^{\circ}C$ and 1,000 to $1,100^{\circ}C$. At some pottery fired at over $1,000^{\circ}C$, it is thought that the refinement of raw materials were processed to remove macrocrystalline fragments. However, it was found that phosphate in soil environments formed amorphous aggregates with Al and Fe within the pores and voids on pottery fired at the low temperature. It indicates the contamination of pottery after burial.