• Title/Summary/Keyword: 저어콘 U-Pb 연대측정

Search Result 45, Processing Time 0.02 seconds

Preliminary Structural Geometry Interpretation of the Pyeongchang Area in the Northwestern Taebaeksan Zone, Okcheon Belt: A Klippe Model (옥천대 북서부 태백산지역 평창 일대의 클리페 모델 기반 구조기하 형태 해석 예비 연구)

  • Heunggi Lee;Yirang Jang;Sanghoon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.831-846
    • /
    • 2023
  • The Jucheon-Pyeongchang area in the northwestern Taebaeksan Zone of the Okcheon fold-thrust belt preserved several thrust faults placing the Precambrian basement granite gneisses of the Gyeonggi Massif on top of the Early Paleozoic Joseon Supergroup and the age-unknown Bangrim Group. Especially, the thrust faults in the study area show the closed-loop patterns on the map view, showing older allochthonous strata surrounded by younger autochthonous or para-autochthonous strata. These basement-involved thrusts including Klippes will provide important information on the hinterland portion of the fold-thrust belt. For defining Klippe geometry in the thrust fault terrains of the Jucheon-Pyeongchang area by older on younger relationship, the stratigraphic position of the age-unknown Bangrim Group should be determined. The Middle Cambrian maximum depositional age by the detrital zircon SHRIMP U-Pb method from this study, together with field relations and previous research results suggest that the Bangrim Group overlies the Precambrian basement rocks by nonconformity and underlies the Cambrian Yangdeok Group (Jangsan and Myobong formations). The structural geometric interpretation of the Pyeongchang area based on newly defined stratigraphy indicates that the Wungyori and Barngrim thrusts are the same folded thrust, and can be interpreted as a Klippe, having Precambrian hanging wall granite gneisses surrounded by younger Cambrian strata of the Joseon Supergroup and the Bangrim Group. Further detailed structural studies on the Jucheon-Pyeongchang area can give crucial insights into the basement-involved deformation during the structural evolution of the Okcheon Belt.

CHIME Ages of Precambrian Rocks from the Goseong-Ganseong Area, Northeastern Part of the Gyeonggi Massif, and Their Tectonic Implications (경기육괴 북동부 고성-간성 지역 선캠브리아 암석의 CHIME 연대와 그 지체구조적 의의)

  • Cho, Deung-Lyong;Suzuki, Kazuhiro;Chwae, Uee-Chan;Adachi, Mamoru
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.1 s.47
    • /
    • pp.1-11
    • /
    • 2007
  • CHIME (chemical Th-U-total Pb isochron) geochronology were made for Precambrian rocks from Goseong-Ganseong area, northeastern part of the Gyeonggi massif. Zircon and/or monazite grains from orthogneisses give $1672{\pm}69\;to\;1414{\pm}36Ma$ ages, and monazite grains from paragneisses yield similar ages ranging from $1703{\pm}70\;to\;1395{\pm}97Ma$ suggesting that $1.7{\sim}1.4Ga$ igneous intrusions and coeval metamorphisms were occurred over the area. Together with reported prevailing $1.9{\sim}1.8Ga$ igneous activities and regional metamorphism from the Cyeonggi massif, our age data from Goseong-Ganseong area would be potentially correlated with long-lived $(1.8{\sim}1.3Ga)$ global tectonotermal events in marginal outgrowth of supercontinent Columbia which was finally assembled by collisional orogenies at ${\sim}1.8Ga$. Petrological and geochmical studies, however, should be followed to confirm this tectonic interpretation.

Granite Dike Swarm and U-Pb Ages in the Ueumdo, Hwaseong City, Korea (경기도 화성시 우음도 일원의 화강암 암맥군과 U-Pb 연령)

  • Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Ha, Sujin;Lim, Hyoun Soo;Shin, Seungwon;Kim, Hyeong Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.618-638
    • /
    • 2022
  • The Middle Jurassic granite dike swarm intruding into the Paleoproterozoic banded gneiss is pervasively observed in Ueumdo, Hwaseong City, mid-western Gyeonggi Massif. Based on their cross-cutting relationships in a representative outcrop, there are four dikes (UE-A, UE-C, UE-D, UE-E), and depending on the direction, there are three granite dike groups, which are NW- (UE-A dike), NW to WNW- (UE-C dike), and NE-trending (UE-D and UE-E dikes). These granite dikes are massive, medium-to coarse-grained biotite granites, and their relative ages observed in outcrops are in the order of UE-A, UE-D (=UE-E), and UE-C. The geometric analysis of the dikes indicates that the UE-A and UE-C dikes intrude under approximately NE-SW trending horizontal minimum stress fields. The UE-A dike, which showed a relatively low average SiO2 content by major element analysis, is a product of early magma differentiation compared to other dikes; therefore, it is consistent with the relative age of each dike. The 206Pb/238U weighted mean ages for each dike obtained from SHRIMP zircon U-Pb dating were calculated to be 167 Ma (UE-A), 164 Ma (UE-C), 167 Ma (UE-D), and 167 Ma (UE-E), respectively. The samples of the UE-A, UE-D, and UE-E dikes showed very similar ages. The UE-C dike shows the youngest age, which is consistent with the results of the relative age in the outcrops and major element analysis. Therefore, the granite dikes intruded into the Middle Jurassic (approximately 167 and 164 Ma), coinciding with those of the Gyeonggi Massif, where the Middle Jurassic plutons are geographically widely distributed. This result indicates that the wide occurrence of the Middle Jurassic plutons on the Gyeonggi Massif was formed as a result of igneous activity moving in the northwest direction with the shallower subduction angle of the subducting oceanic plate during the Jurassic.

The Origin and Age of the Orbicular Granite Gneiss in Wangjungri, Muju (무주 왕정리 일대 구상 화강편마암의 성인과 형성시기)

  • Oh, Chang Whan;Lee, Byung Choon;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.117-135
    • /
    • 2013
  • Orbicular granite gneisses occur as a xenolith within two-mica leucogranites, together with early Paleoproterozoic metasedimentary xenoliths, in Wangjeong-ri, Muju area. The whole-rock chemistries and SHRIMP zircon Pb/U ages of the leucogranites indicate that they are S-type granitoids formed in the continental tectonic setting at $1875{\pm}75$ Ma. The SHRIMP age of monazites from the orbicular granite gneiss gives $1867{\pm}4$ Ma as a metamorphic age which is similar to the intrusion age of the two-mica leucogranite within the error range. The similar ages between zircons and monazites represent that the orbicular granite gneisses formed by metamorphism during the intrusion of the two-mica leucogranite; the metasedimetary xenoliths which sank within the parent magma of leucogranites were metamorphosed into orbicular granite gneisses by thermal metamorphism ($650-740^{\circ}C$, 4-6.5 kbar) due to the heat supplied from surrounding magma. During the thermal metamorphism, the core of orbicular granite gneiss mainly consisting of cordierite formed, and in some orbicular granitic gneisses, the leucocratic melt formed by melting of quartz and plagioclase in the core, squeezed out from core and crystallized around the core forming outer rim. The hydrothermal fluid at the late stage of magma differentiation penetrated into the orbicular granite gneisses resulting pinitization of cordierite into chlorite and sericite. As Muju orbicula granite gneiss was formed from sedimentary rocks, it is more appropriate to be called Muju orbicula granitic gneiss.

The Characteristic of Mangerite and Gabbro in the Odaesan Area and its Meaning to the Triassic Tectonics of Korean Peninsula (오대산 지역에 나타나는 맨거라이트와 반려암의 특징과 트라이아스기 한반도 지체구조 해석에 대한 의미)

  • Kim, Tae-Sung;Oh, Chang-Whan;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-98
    • /
    • 2011
  • The igneous complex consisting of mangerite and gabbro in the Odaesan area, the eastem part of the Gyeonggi Massif, South Korea, intruded early Paleo-proterozoic migmatitic gneiss. The mangerite is composed of orthopyroxene, clinopyroxene, amphibole, biotite, plagioclase, pethitic K-feldspar, quartz. The gabbro has similar mineral assemblage but gabbro has minor amounts of amphibole and no perthitic K-feldspar. The gabbro occurs as enclave and irregular shaped body within the mangerite, and the boundary between the mangerite and gabbro is irregular. Leucocratic lenses with perthitic K-feldspar are included in the gabbro enclaves. These textures represent mixing of two different magmas in liquid state. SHRIMP U-Pb zircon age dating gave $234{\pm}1.2$ Ma and $231{\pm}1.3$ Ma for mangerite and gabbro, respectively. These ages are similar with the intrusion ages of post collision granitoids in the Hongseong (226~233 Ma) and Yangpyeong (227~231 Ma) areas in the Gyeonggi Massif. The mangerite and gabbro are high Ba-Sr granites, shoshonitic and formed in post collision tectonic setting. These rocks also show the characters of subduction-related igneous rock such as enrichment in LREE, LILE and negative Nb-Ta-P-Ti anomalies. These data represent that the mangerite and gabbro formed in the post collision tectonic setting by the partial melting of an enriched lithospheric mantle during subduction which occurred before collision. The heat for the partial melting was supplied by asthenospheric upwelling through the gab between continental and oceanic slabs formed by slab break-off after continental collision. The distribution of post-collisional igneous rocks (ca. 230 Ma) in the Gyeonggi Massif including Odaesan mangerite and gabbro strongly suggests that the tectonic boundary between the North and South China blocks in Korean peninsula passes the Hongseong area and futher exteneds into the area between the Yangpyeong-Odaesan line and Ogcheon metamorphic belt.