• Title/Summary/Keyword: 저압주조

Search Result 15, Processing Time 0.02 seconds

The characteristic of low pressure casting AZ91D Magnesium alloy wheel (저압주조방식에 의한 AZ91D 마그네슘 휠 특성)

  • Kim, Kwang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4963-4967
    • /
    • 2012
  • In this study, 18-inch wheels, magnesium alloy AZ91D was developed and we compared overseas go on sale magnesium wheels and same specifications of the aluminum wheels mechanical properties. Prototype 18-inch magnesium wheels by a low-pressure casting method to achieve the same specifications of aluminum wheels and reduced 26% of the weight, the new edition of magnesium wheels compared to the same level of elongation, tensile strength, hardness. Casting and heat treatment process to improve future need to improve the yield strength is expected.

Study on the improvement of productivity and quality on the Aluminum wheel by low pressure die casting (저압주조 알루미늄 휠 생산성 향상 및 품질개선에 관한 연구)

  • 이영철;최정길
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.224-228
    • /
    • 2001
  • 자동차용 Al Wheel의 반복 금형 주조 공정에 있어서의 적정 냉각조건 확립 및 수축공 등의 주조결함을 제어하기 위하여 3차원 응고, 유동, 응력 해석 프로그램 연동 기술과 자동 금형온도 조절장치를 실제 현장에 적용하여 생산되는 Al Wheel 제품의 최적 주조조건 및 냉각조건을 확립하였다. 주조과정 중의 금형의 온도 변화 및 주물의 응고, 유동 거동은 수치해석 결과와 잘 일치하는 경향을 나타내었다. 또한 금형온도 자동 조절 장치를 사용함으로서 금형 작업온도의 가열 및 유지가 정량적으로 제어 가능하며, 제품 품질의 유지 및 Cycle Time 최적화를 이룰 수 있으며 궁극적으로는 금형 수명 연장 및 생산성 향상 등을 이룰 수 있었다.

Production of Automobile Al Wheel by Low-Pressure Die Casting (I) : Flow and Solidification Simulation (저압주조에 의한 자동차 Al Wheel의 제조(I) : 유동 및 응고해석)

  • Choo, In-Ho;Yu, Sung-Kon;Choi, Jeong-Kil
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.578-585
    • /
    • 1998
  • A multi-purpose code MAGMA was employed for mold design and process control in producing Al wheel by lowpressure die casting. Three-dimensional solid modeling was followed by mesh generation of casting and molds(top, bottom and side). The simulation of stability of casting cycle time, mold filling simulation with pressure variation from P1 to P2, solidification simulation by solidification time and feeding criteria, and temperature distribution of molds during processes were studied in this research. The thermal stability of molds was attained after 5 cycles when molds were preheated at $400^{\circ}C$. The pressure increase from P1 to P2 for mold filling was evaluated as slightly higher, and 6 seconds were taken for the mold filling. The cycle time was believed to be designed properly judged from the solidification time of casting and open/close time of molds.

  • PDF

Fabrication Process of Rheology Material Thin Plate Using Vacuum Low Pressure Die-casting Process with Electromagnetic Stirring (레오로지 박판의 전자교반을 응용한 진공 저압주조 제조공정)

  • Jang, Sin-Kyu;Bae, Jung-Woon;Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • In this study, we develop the lower pressure die casting with rheo-forming process of A356 aluminum alloy and vacuum system which can control the crystal size and obtain the high strengthened-light material. Using this process, we fabricate the thin plate for bipolar plate through the low pressure die casting with electromagnetic stirring and vacuum-evacuation which can control the crystal grain by electromagnetic stirring. Thin plate ($110mm{\times}130mm{\times}1mm$) is fabricated by this process. The average Vickers hardness of thin plate is about 77 HV.