• Title/Summary/Keyword: 저속 디젤기관

Search Result 36, Processing Time 0.026 seconds

Comparison of characteristics between cam and electric control type of 2 stroke diesel engine for ship propulsion (캠 및 전자제어식 선박추진용 저속 2행정 디젤엔진의 성능 비교)

  • Lee, Sang Deuk;Jung, Suk Ho;Koh, Dae Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.849-854
    • /
    • 2013
  • Many researches on green ship with increasing on economics, efficiency and convenience have been carried out consistently. One of them is development of diesel engines with electronic control. While small duty one for automobiles had been adopted mainly already, disseminating heavy duty one for ships has trouble due to safety and reliability. In order to solve these problem in this study, performance of electronic control and cam type engine installed in parallel on training ship HANBADA of korea maritime university was analyzed and compared. It is certain that specific fuel oil consumption of the electronic control type is lower than cam type and excellent at lower engine load, especially. And the electronic control type shows more effective characteristic at sea trial on specific fuel oil consumption.

A Study on the Cabin's Noise Levels of Cargo-Passenger Ships plies South-West Coast line (서남 연근해 운항 정기화객선의 선내 소음에 관한 연구)

  • Yu, Young-Hun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.207-212
    • /
    • 2006
  • The noise levels on board ship recognized at Europe in the early 1970s and the noise regulations on board ship began to put in a statutory form. After that, in 1982 "International Code on Noise Levels on Board Ships" adopted by IMO and it became standard to the newly built ship and remain so to this day. Especially, the ship engine room, which have huge main engine and various kinds of subsidiary machines, is under an extremely loud condition and so the worker who works in it is easy to lose his hearing. Recently, each nation regulates the allowable noise exposure time by law to protect the industrial employee from the occupational hardness of hearing. In our country, the allowable noise exposure time is regulated by the labor standard law but the international provisions regulated by IMO have been applied in case of the ship engine room. In this paper, the cabin's noise levels of cargo-passenger ships plies south-west coast line were investigated.

  • PDF

Probabilistic Analysis of Coupled Axial and Torsional Vibration of Marine Diesel Propulsion Shafting System (선박디젤추진축계 종.비틂연성진동의 확률적 해석)

  • S.Y. Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.71-78
    • /
    • 1998
  • Recently, modern long-stroke diesel engines with small number of cylinders have been installed for energy saving and simpler maintenance. These kinds of low speed diesel engine produce large torsional vibration in the shafting, which induces the excessive vibratory stresses in the shafting and large propeller thrust variation. This thrust variation excites vibrations of the shafting and superstructure in the longitudinal direction. Up to now the deteriministic analysis of coupled vibration of marine shafting system has been performed. In this paper probabilistic analysis method of the marine diesel propulsion shafting system under coupled axial and torsional vibrations is presented. For the purpose of this work, the torsional and axial vibration excitations of engine and propeller are assumed to be probabilistic while the lateral excitation is assumed to be deterministic. The probabilistic analysis is based on a response surface and Monte-Carlo simulation. Numerical results based on the proposed method are compared with results calculated using the conventional deterministic analysis method. The results obtained make it clear that the proposed method gives a substantial increase in information about shafting behaviour as compared with the deterministic method.

  • PDF

A STUDY ON THE SPEED CONTROL OF A LOW SPEED-LONG STROKE MARINE DIESEL ENGINE (저속 장행정 박용디젤기관의 속도제어에 관한 연구)

  • 유영호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.26-36
    • /
    • 1989
  • Recently digital governor system is commonly adapted for the speed control of the marine diesel engine because of too much fluctuation of rpm resulted by the low speed, long stroke, high efficiency and a small number of cylinder of it, and versatile studies on the development of digital governor system are progressed. On this subject the new control method in which the fuel is controlled by feedforwarding the change of load as well as the feedback of angular velocity in case of disregarding the engine dead time and influence of scavenging air was proposed by the authors, and found the method has shown quite a good control performance in comparision to the conventional control method by the simulation using a digital computer for various load change. In this paper the speed control system of a diesel engine is simulated in case of regarding the engine dead time by the proposed method, and also confirm a good control performance of it under even more realistically simulated environment.

  • PDF

Speed Control of the Low Speed Diesel Engine by $H_{\infty}$ Controller Design Method ($H_{\infty}$ 제어기법을 이용한 저속디젤기관의 속도제어)

  • 양주호;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.63-70
    • /
    • 1993
  • In 1980's to 1990's the marine propulsion diesel engines have been developed into lower speed and longer stroke for the energy saving(small S.F.O.C.). As these new trends the convetional mechnical-hydraulic governors were not adapted to the new requirements and the digital governors have been adopted in the marine use. The digital governors usually use the control algorithms such as the PID control, optimal control, adaptive control and etc. While the engine has delay time and parameter variations these control algorithms have difficulty in considering the stability and the robustness for the model uncertainty. In this study, the $H_{\infty}$ controller design method are applied to the speed control of the low speed marine diesel engine. By comparison the $H_{\infty}$ control results with the PID control results, the validity of the $H_{\infty}$ controller under the delay time and parameter variations is confirmed.

  • PDF

A STUDY ON THE SPEED CONTROL OF A LOW SPEED-LONG STROKE MARINE DIESEL ENGINE (저속 장행정 박용디젤기관의 속도제어에 관한 연구)

  • 유영호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.53-61
    • /
    • 1988
  • Speed of a diesel engine is usually controlled by the hydraulic governor which uses the centrifugal force of rotating fly balls for sensing the error speed. But for a recently developed high efficient, low speed and long stroke 2 cycle marine diesel engine, this governor doesn't work well enough because of too much changes of toraring force during one revolution of engine and too long uncontrollable time due to small numbers of cylinder. For improvement of jiggling phenomena and unstability various studies are being carried out, but they are not enough for a steep load change in a small ship's generator plant or at rough sea condition in a propulsion engine. In this paper, authors propose a new method to control a fuel before the change of angular velocity due to load change by feedforward the change of load, and find that the proposed method shows quite a good control performance in comparision to the customary PID control method by simulation using a digital computer for the various load change.

  • PDF

Speed Control for Low Speed Diesel Engine by Hybrid F-NFC (Hybrid F-NFC에 의한 저속 디젤 기관의 속도 제어)

  • Choi, G.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.159-164
    • /
    • 2006
  • In recent, the marine engine of a large size is being realized a lower speed, longer stroke and a small number of cylinders for the energy saving. Consequently the variation of rotational torque became larger than former days because of the longer delay-time in fuel oil injection process and an increased output per cylinder. It was necessary that algorithms have enough robustness to suppress the variation of the delay-time and the parameter perturbation. This paper shows the structure of hybrid F-NFC against the delay-time and the perturbation of engine parameter as modeling uncertainties, and the design of the robust speed controller by hybrid F-NFC for the engine. And, The Parameter values of linear equation are determined by RC-GA for F-NFS. The hybrid F-NFC is combined the F-NFC and PID controller for filling up each.

  • PDF

Effect of EGR on power and exhaust emissions in diesel engine (디젤엔진의 출력 및 배기가스에 미치는 EGR의 영향)

  • Song, Kyu-keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.870-875
    • /
    • 2015
  • Diesel engines are widely used due to superior power and fuel consumption, however there are many challenges in exhaust gas management. Exhaust gas recirculation (EGR) is the most effective technique for reducing mono-nitrogen oxide (NOx) emissions in a diesel engine, in comparison with other catalytic technologies. In addition, the technology has a number of advantages in terms of economic efficiency and implementation. In this study, the effects on the power and exhaust characteristics of diesel engines equipped with EGR systems were investigated. It was found that as the EGR rate increased, horsepower expressed as IHP and BHP decreased. The net effect of the application of EGR was measured at various engine speeds. EGR technology caused decreases in BHP of around 9% during low engine speed and 3.5% during high engine speed. Additionally, NOx emissions reduced as the EGR rate increased, and increased as engine speed increased. However, smoke emissions increased as the EGR rate increased, and decreased as engine speed increased. The optimum operating conditions and ERG rate to simultaneously achieve minimum NOx and smoke emissions were investigate. It was found that as the EGR rate increased, optimal operating speed for minimal NOx and smoke also increased. Keywords: Diesel engine, Exhaust gas recirculation, Power perfomance, Emission characteristics, NOx, Smoke

Energy efficiency improvements in part load for a marine auxiliary diesel engine (선박발전기용 디젤엔진의 부분부하에서 에너지 효율 개선에 관한연구)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.877-882
    • /
    • 2014
  • The reduction of CO2 emission has been discussed in the Marine Environment Protection committee in the International Maritime Organization as the biggest causes of GHG for the purpose of indexing CO2 amounts released into the atmosphere from ships. Accordingly, various methods including the change in the hull design to improve energy efficiency, the coating development to reduce friction resistances, the additives development for improving thermal efficiency in an engine, the low-speed operation to reduce fuel consumptions, and etc. have been applied. The main engine of a ship is an electronic engine for improving the efficiency of the whole load area. However, marine generator engines still use mechanical drive engines in intake, exhaust, and fuel injection valve drive cams. In addition, most of marine generator engines in ships apply a part-load operation of less then 80% due to an overload protection system. Therefore, marine auxiliary diesel engine set at 100% load is necessary to readjust in order to efficient operation because of part-load operation. The objective of this study is to report the results of the part-load fuel consumption improvement by injection timing readjust to identifying the operational characteristics of a marine generator engine currently operated in a ship.

Design of Robust Speed Controllers for Marine Diesel Engine (선박용 대형 디젤 기관의 강인 속도 제어기 설계)

  • Hwang, Soon-Kyu;Lee, Young-Chan;Kim, Chang-Hwa;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.820-828
    • /
    • 2011
  • Energy saving is one of the most important factors for profits in marine transportation. In order to reduce the specific fuel oil consumption, the ship's propulsion efficiency must be increased as much as possible. The propulsion efficiency depends upon a combination of propulsion engine and propeller that has better efficiency as lower rotational speed. As the engine has lower speed the variation of rotational torque become larger because of the longer delay time in fuel oil injection process. In this study, robust control theory is applied to the design of engine speed controllers which are sub-optimal $H_{\infty}$ controller, $H_{\infty}$ loop-shaping controller and ${\mu}$-synthesis controller considering robust stability and robust performance. And the validity of these three controllers is investigated through the results of computer simulation.