• Title/Summary/Keyword: 저속충격손상

Search Result 60, Processing Time 0.029 seconds

A Study on Low-Velocity Impact Characterization of Various Sandwich Panels for the Korean Low Floor Bus Application (초저상 버스 차체 적용을 위한 샌드위치 패널들의 저속충격 특성 연구)

  • Lee, Jae-Youl;Lee, Sang-Jin;Shin, Kwang-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.506-516
    • /
    • 2007
  • In this paper, a study on low-velocity impact response of four different sandwich panels for the hybrid bodyshell and floor structure application of the Korean low floor bus vehicle was done. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact damage size and depth of the permanent indentation were measured by 3-Dimensional Scanner. Failure modes were studied by sectioning the specimens and observed under optical microscope. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.

Low Velocity Impact Property of CF/Epoxy Laminate according to Interleaved Structure of Amorphous Halloysite Nanotubes (비정질 할로이사이트 나노입자의 교차적층 구조에 따른 탄소섬유/에폭시 라미네이트의 저속 충격 특성)

  • Ye-Rim Park;Sanjay Kumar;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.270-274
    • /
    • 2023
  • The stacking configuration of fiber-reinforced polymer (FRP) composites, achieved via the filament winding process, exhibits distinct variations compared to conventional FRP composite stacking arrangements. Consequently, it becomes challenging to ascertain the influence of mechanical properties based on the typical stacking structures. Thus, it becomes imperative to enhance the mechanical behavior and optimize the interleaved structures to improve overall performance. Therefore, this study aims to investigate the impact of incorporating amorphous halloysite nanotubes (A-HNTs) within different layers of five unique layer arrangements on the low-velocity impact properties of interleaved carbon fiber-reinforced polymer (CFRP) structures. The low-velocity impact characteristics of the laminate were validated using a drop weight impact test, wherein the resulting impact damage modes and extent of damage were compared and evaluated under microscopic analysis. Each interleaved structure laminate according to whether nanoparticles are added was compared at impact energies of 10 J and 15 J. In the case of 10 J, the absorption energy showed a similar tendency in each structure. However, at 15 J, the absorption energy varies from structure to structure. Among them, a structure in which nanoparticles are not added exhibits the highest absorption energy. Additionally, various impact fracture modes were observed in each structure through optical microscopy.

Analysis for Impact Damage Resistance in Filament Wound Composite Pressure Vessel (필리멘트 와인딩 복합재 고압압력용기의 충격저항성 해석)

  • Park Jae-Beom;Hwang Tae-Kyung;Kim Hyoung-Guen;Kim Jung-Kyu;Kang Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1109-1117
    • /
    • 2005
  • To identify damage that develops in filament wound composite pressure vessels subjected to low velocity impact, a series of impact tests was performed on specimens cutting from the full scale pressure vessel. The resulting damages by the three different impactors were assessed by the scanning acoustic and metallurgical microscope. Based on the impact force history and damage, the resistance parameters were proposed and its validity in identifying the damage resistance of CFRP pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the impactor shape were estimated quantitatively.

Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact (곡률을 가진 적층복합재 구조에서의 저속충격손상 평가)

  • 전정규;권오양
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.69-73
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact force is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. The distribution of delamination along the thickness direction of curved laminates are also different from that of flat plates. Delamination was distributed rather even]y at each interface along the thickness direction of curved laminates. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF

Investigation on PVDE & PZT Sensor Signals for the Low-Velocity Impact Damage of Gr/Ep Composite Laminates (복합적층판의 저속충격손상에 따른 PZT 센서와 PVDF 센서의 신호 분석)

  • 이홍영;김진원;최정민;김인걸
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.125-128
    • /
    • 2003
  • Low-velocity impact damage is a major concern in the design of structures made of composite materials, because impact damage is hidden inside and cannot be detected by visual inspection. The piezoelectric thin film sensor can be used to detect variations in structural and material properties for structural health monitoring. In this paper, the PVDF and PZT sensors were used for monitoring impact damage initiation in Gr/Ep composite panel to illustrate this potential benefit. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The wavelet transform(WT) is used to decompose the piezoelectric sensor signals in this study. Test results show that the particular waveform of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. And it is found that both PZT and PVDF sensors can be used to detect the impact damage.

  • PDF

Impact Performance of 3D Orthogonal Composites by Automated Tape Placement Process (자동적층 공정에 의한 3차원 직교 섬유배열구조 복합재의 충격특성)

  • Song S-W;Lee C-H;Um M-K;Hwang B-S;Byun J-H
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.38-46
    • /
    • 2005
  • In order to characterize the outstanding performance of three-dimensional (3D) composites, the low velocity impact test has been carried out. 3D fiber structures have been achieved by using the automated tape placement (ATP) process and a stitching method. Materials for the ATP and the stitching process were carbon/epoxy prepreg tapes and Kevlar fibers, respectively. Two-dimensional composites with the same stacking sequence as 3D counterparts have also been fabricated for the comparison of damage tolerance. For the assessment of damage after the impact loading, specimens were subjected to C-Scan nondestructive inspection. Compression after impact (CAI) tests were conducted to evaluate residual compressive strength. The damage area of 3D composites was greatly reduced $(30-40\%)$ compared with that of 2D composites. Although the CAI strength did not show drastic improvement for 3D composites, the ratio of retained strength was $5-10\%$ higher than 2D samples. The effect of stitching on the impact performance was negligible above the energy level of 35 Joules.

Damage of Composite Laminates by Low-Velocity Impact (저속충격에 의한 복합재료 적층판의 손상)

  • Nam, Ki-Woo;Ahn, Seok-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.284-288
    • /
    • 2003
  • This study was investigated the nondestructive characteristics of the damage caused by low-velocity impact on symmetric cross-ply laminates. These laminates were $[0^{\circ}/90^{\circ}]{_{16s,}}\;{_{24s,}}\;{_{32s,}}\;{_{48s}}$, that is, the thickness was 2, 3, 4 and 6 mm. The impact machine, model 8250 Dynatup Instron, was used a drop-weight type with gravity. The impact velocities used in experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec. The load and deformation were increased as impact velocity increase. Even if the load increased with laminates thickness in same impact velocity, the deformation decreased. The extensional velocity was a quick as laminate thickness increase in same impact velocity and as impact velocity increase in same laminate thickness. In ultrasonic scans, damaged area was represented an dimmed zone. This is due to the fact that the wave, after having been partially reflected by the defects, has not enough energy to tough the oposite side or to come back from it. The damaged laminate areas were different according to the laminate thickness and the impact velocity. The extensional velocities became lower in if direction and higher in $0^{\circ}$ direction when the size of the defects increases. But, it was difficult to draw any conclusion for the extensional velocities in $45^{\circ}$ direction.

  • PDF

Damage of Composite Laminates by Low-Velocity Impact (저속충격에 의한 복합재료 적층판의 손상)

  • AHN SEOK-HWAN;KIM JIN-WOOK;DO JAE-YOON;KIM HYUN-SOO;NAM KI-WOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.39-43
    • /
    • 2005
  • The study investigated the nondestructive characteristics of damage, caused by law-velocity impact, on symmetric cross-ply laminates, composed of [0o/90o]16s, 24s, 32s, 48s. The thickness of the laminates was 2, 3, 4 and 6 mm, respectively. The impact machine used, Model 8250 Dynatup Instron, was a drop-weight type that employed gravity. The impact velocities used in this experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec, respectively. Both the load and the deformation increased when the impact velocity was increased. Further, when the load increased with the laminate thickness in the same impact velocity, the deformation still decreased. The extensional velocity was quick, as the laminate thickness increased in the same impact velocity and the impact velocity increased in the same laminate thickness. In the ultrasonic scans, the damaged area represented a dimmed zone. This is due to the fact that the wave, after the partial reflection by the deflects, does not have enough energy to touch the opposite side or to come back from it. The damaged laminate areas differed, according to the laminate thickness and the impact velocity. The extensional velocities are lower in the 0o direction and higher in the 90o direction, when the size of the defect increases. However, it was difficult to draw any conclusion for the extensional velocities in the 45o direction.

Evaluation of Low Velocity Impact Damage and Compressive Strength After Impact for Laminate Composites Applied to Lightweight Bogie Frame Induced by Flying Railway Ballast (도상자갈 비산에 의한 경량 대차프레임 적용 적층 복합재의 저속충격 손상 및 충격 후 압축 강도 평가)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Kim, Jung-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2661-2665
    • /
    • 2011
  • In order to evaluate the structural integrity of a GFRP composite bogie frame due to flying railway ballast, the low velocity impact test and compressive test after impact was conducted for glass fiber/epoxy 4-harness satin woven laminate composites applied to skin part of a bogie frame. The impact test was performed using a instrumented impact testing system with energy levels of 5J, 10J and 20J and the designed impactor based on typical railway ballast shapes such as sphere, cube and cone to simulate the ballasted track environments. The compressive strength was tested to according to ASTM D7137 to evaluate the degradation of mechanical property of impact damaged laminate composites. The results showed that the damage area and the degradation of compressive strength after impact for laminate composites was increased with increase in impact energy for all ballast shapes and was particularly most influenced by cone ballast shape.

  • PDF

A Study on the Impact Behavior and Damage of Laminated Composite Plates Subjected to the Low-Velocity Impact (저속 충격을 받는 적층판의 충격거동과 손상에 관한 연구)

  • Ahn, Kook-Chan;Kim, Kyu-Su;Park, Seung-Bum;Hwang, Byung-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.6-10
    • /
    • 2002
  • This paper presents the impact behavior and damage of laminated composite plates subjected to low-velocity impact. For this purpose, a pendulum impact test for impact behavior and C-scan for impact damage are done. Test materials are carbon/epoxy laminated composite plates and stacking sequences $[0/90_4\;[0/45_2/-45]_s,\;[0/45/-45/90]_s$ and [0/26/51/77/-77/-51/-26/0].