• Title/Summary/Keyword: 저방사화 철강재

Search Result 4, Processing Time 0.02 seconds

Evaluation on Creep properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor (핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가)

  • Kong, Yu-Sik;Yoon, Han-Ki;Kim, Dong-Hyen;Park, Yi-Hyen;Nahm, Seung-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.146-151
    • /
    • 2003
  • Reduced Activation Ferritic/Martenstic (RAFs) are leading candidates for structural materials of D-T fusion reactor. One of The RAFs, JLF-1 (9Cr-2W-V, Ta) has been developed and proved to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanical at high temperature, a new scheme to improve high temperature mechanical properties is desired. Therefore, the creep properties and creep life prediction by Larson-Miller Parameter method for JLF-1 to be used for fusion reactor materials or other high temperature components were presented at the elevated temperatures of $500^{\circ}C$, $550^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and $704^{\circ}C$. It was confirmed experimentally and quantitatively that a creep life predictive e벼ation at such various high temperatures was well derived by LMP.

  • PDF

Evaluation on Creep Properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor (핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가)

  • 공유식;윤한기;남승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.58-63
    • /
    • 2004
  • Reduced Activation Ferritic/Martensitic Steels (RAFs) are leading candidntes for structural materials of a D-T fusion reactor. One of the RAFs, JLF-l (9Cr-2W-V, Ta) has been developed and has shown to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanisms at high temperatures, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test technique development of high temperature creep behaviors for this material is very important. In this paper, the creep properties and creep life prediction, using the Larson-Miler parameter method for JLF-l to be used for fusion reactor materials or other high temperature components, are presented at the elevated temperatures of 50$0^{\circ}C$, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and 704$^{\circ}C$. It was confirmed, experimentally and quantitatively, that a creep life predictive equation, at such various high temperatures, is well derived mr the LMP method.

Effect of specimen size on fracture toughness of reduced activation ferritic steel (JLF-l) (저방사화 철강재 (JLF-1)의 파괴인성에 미치는 시험편 크기의 영향)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Park, Won-Jo;Katoh, Y.;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.300-305
    • /
    • 2003
  • Reduced activation ferritic (JLF-1) steel is leading candidates for blanket/first-wall structures of the D-T fusion reactor. In fusion application, structural materials will suffer effects of repeated changes of temperature. Therefore, the data base of tensile strength and fracture toughness at operated temperature $400^{\circ}C$ are very important. Fracture toughness ($J_{IC}$) and tensile tests were carried out at room temperature and elevated temperature ($400^{\circ}C$). Fracture toughness tests were performed with two type size to investigate the relationship between the constraint effect of a size and the fracture toughness resistance curve. As the results, the tensile strength and the fracture toughness values of the JLF-1 steel are slightly decreased with increasing temperature. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. The fracture toughness values of JLF-1 steel at room temperature and at $400^{\circ}C$ shows an excellent fracture toughness ($J_{IC}$) of about $530kJ/m^2\;and\;340kJ/m^2$, respectively.

  • PDF

Variation of the fracture resistance curve with the change of a size in the specimen of reduced activation ferritic steel (JLF-1) (저방사화 철강재 (JLF-1)의 시험편 크기 변화에 따른 파괴저항곡선의 변화)

  • Kim, D.H.;Yoon, H.K.;Lee, S.P.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1240-1245
    • /
    • 2003
  • Reduced activation ferritic steel (JLF-1) is considered as a promising candidate material for blanket or first-wall structure of D-T fusion reactors. The fracture tests of fracture resistance curve (J-R curve) and $J_{IC}$ are desirable to investigate the exact fracture toughness of JLF-1 steel, since it has a high ductility. The fracture toughness of JLF-1 steel is affected by the configuration of test specimen such side groove, specimen thickness or specimen size. In this study, the fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The test results showed the standard specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen.

  • PDF