• Title/Summary/Keyword: 저마루 구조물

Search Result 7, Processing Time 0.017 seconds

A Study on the Application of Low Crest Structures to Reduce Wave Overtopping (월파저감을 위한 저마루 구조물의 적용성 검토)

  • Kyu-Tae, Shim;Kyu-Han, Kim;Ki-Seock, Cha
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.290-302
    • /
    • 2022
  • In this study, it was examined for the reduction of wave overtopping and water level fluctuation in front of the revetment when applying a reinforcement method to revetment where wave overtopping occurs. As a result of the study, in the case of the cross-sectional experiment. more than 70% of the wave overtopping reduction effect depending on the reinforcement conditions was occurred, and it was analyzed that the result increases by about four times or more in the comparison with the 3d test. The average water level in front of the revetment was lowered when a low crest structure was not installed. and there was a tendency to rise under the condition of low crest structures installed. In the comparison with the wave basin test, there was a difference of about 0.5 to 0.6 times when a low crest structure was not installed, and it was increased by 5.5 times after low crest structures were installed.

Experiments for Amour Stability of Low Crested Structure covered by Tripod Block (저 마루높이 구조물의 피복재 안정성 실험: Tripod 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Lim, Ho Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.43-49
    • /
    • 2020
  • In this study, the stability of the low crested structure armoured by Tripod block has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the rock stability on crest, front, and the rear slope has been investigated. From the experimental data, the new empirical formula for the stability coefficients of the Tripod block was proposed. But Tripod is not proper to use the armour block of the low crested structure because the uplift force of this block is greater than that of Tetrapod and rock.

Experiments for Amour Stability of Low Crested Structure Covered by Tetrapods (저 마루높이 구조물의 피복재 안정성 실험: Tetrapod 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Moon, Gang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.769-777
    • /
    • 2019
  • Low crested coastal structures such as detached breakwaters and submerged breakwaters (artificial reefs) have been commonly used as coastal protection measures. The armour units of these structures are unstable than those in non-overtopped structure cases. The stability of low crested structures armoured by rock has been suggested in existing studies. In this study, the stability of Tetrapods armour units on theses structures has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the armour stability on crest, front, and the rear slope has been investigated. Armour units were mostly damaged near the upper part of the seaward slope and the crest of the seaward side. From the experimental data, the new empirical formula for the stability coefficients of the Tetrapods was proposed.

Experiments for Amour Stability of Low Crested Structure Covered by Rocks (저 마루높이 구조물의 피복재 안정성 실험: 피복석 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Moon, Gang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • In this study, the stability of low crested structure armoured by rock has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the rock stability on crest, front, and the rear slope has been investigated. Rocks were mostly damaged near the upper part of the seaward slope and the crest of the seaward side. From the experimental data, the new empirical formula for the stability coefficients of the rocks was proposed.

Prediction of Mean Water Level Rise Behind Low-Crested Structures and Outflow Velocity from Openings by Using a Hybrid Method Based on Two Dimensional Model Test and Hydrodynamic Numerical Modeling (단면수리모형 및 해수유동모델링 결합기법에 의한 저마루 구조물 배후의 평균수위 상승 및 개구부 유출유속 예측)

  • Lee, Dal Soo;Lee, Ki-Jae;Yoon, Jae Seon;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.410-418
    • /
    • 2017
  • The stability of low-crested structure (LCS) and overtopping discharge over a seawall behind the LCS are influenced by the water level behind the structure. Hence, the experimental results can be distorted unless the increase of water level is known when two-dimensional experiment is carried out. In order to estimate increase of the mean water level behind the low-crested structure, this study applied a hybrid technique that combined results of two-dimensional model test and hydrodynamic numerical modeling based on the relationship between the water level and discharge. By using this technique, the mean water level increase and flow field can be obtained almost at the same time, which resolved the above problem considerably. In addition, this method can provide an approximate information about the outflow velocity from the openings of the structure, which is helpful for selecting appropriate planar configuration of the low-crested structure.

Hydrodynamic Characteristics of Tide-Adapting Low-Crested Structure (조위차 극복형 저마루 구조물의 수리특성)

  • Hur, Dong-Soo;Jeong, Yeon-Myeong;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.68-75
    • /
    • 2019
  • A low-crested structure (LCS) is an excellent feature not only because it provides shore protection but also because it is fully submerged. However, in order to properly control waves, it is necessary to maintain a certain range of crest height and width in consideration of the wave dimensions at the installation area. According to previous studies, an LCS has some wave breaking effect when the crest width is more than a fourth of the incident wavelength and the crest depth is less than a third of the incident wave height. In other words, if the crest width of the LCS is small or the crest depth is large, it cannot control the wave. Therefore, when an LCS is installed in a large sea area with a great tidal range in consideration of the landscape, waves cannot be blocked at high tide. In this study, the hydraulic performances of a typical trapezoidal LCS with a constant crest height and a low-crested structure with an adjustable crest height, which was called a tide-adapting low-crested structure (TA-LCS) in this study, were compared and evaluated under various wave conditions through hydraulic experiments. It was found that the wave transmission coefficients of the TA-LCS at high tide were lower than the values for the typical LCS based on empirical formulas. In addition, the hydraulic performances of the TA-LCS for wave reflection control were 12.9?30.4% lower than that of the typical LCS. Therefore, the TA-LCS is expected to be highly effective in controlling the energy of incoming waves during high tide even in a macro-tidal area.

Variation Characteristics of Irregular Wave Fields around 3-Dimensional Low-Crested-Breakwater (3차원 저마루구조물(LCS) 주변에서 불규칙파동장의 변동특성)

  • Lee, Kwang-Ho;Lee, Jun Hyeong;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.122-134
    • /
    • 2020
  • On the many coasts of South Korea, including the eastern side, it has been recently increasing the coastal disaster such as the severe coastal erosion and road damage swept away by the wave. As one of the alternatives to prevent the coastal disaster, it has been widely studied the coastal disaster reduction method by the Low-Crested Structure (LCS) in the many countries including several European countries. In this study, the olaFLow model is used to simulate the permeable LCS and wave field of the LCS through the three-dimensional irregular waves numerical analysis on the basis of the previous research. From the numerical analysis, it is evaluated the Hrms, nearshore current and time-averaged turbulent kinetic energy. In addition, the pattern of nearshore current and spatial distribution of time-averaged turbulent kinetic energy are compared with the case of submerged breakwater under the irregular wave fields. As one of significant results, it is confirmed that the pattern of nearshore current is different with the case of submerged breakwater.