• Title/Summary/Keyword: 저량.유량 흐름도

Search Result 3, Processing Time 0.018 seconds

인과관계에 관한 구조추론과 강도추론의 관련성

  • 김동환
    • Proceedings of the Korean System Dynamics Society
    • /
    • 2003.02a
    • /
    • pp.57-64
    • /
    • 2003
  • 시스템 다이내믹스는 인과지도(Causal map)를 통한 시스템 이해를 그 출발점으로 한다. 특히 시스템 사고(systems thinking)는 저량-유량 흐름도를 통한 컴퓨터 시뮬레이션을 통하지 않고서 인과지도 분석만을 통한 시스템의 이해를 시도한다. 그러나 과연 인파지도만을 가지고 시스템을 동태적 변화를 이해/예측할 수 있는가에 관하여는 낙관적 전망과 부정적 전망이 혼재되어 있는 상황이다. 본 연구에서는 인과지도 구축을 통하여 시스템의 변화를 이해하는 데 있어서 어떠한 인지적 편향(bias)이 개입되는지를 탐색하고자 한다. 만일 심리적 편향이 존재한다면. 시스템 사고는 오류로부터 자유로울 수 없을 것이다. 본 연구에서는 이러한 오류의 존재를 탐색함으로써 시스템 사고의 제한정과 그 극복방안에 관하여 논의하고자 한다.(중략)

  • PDF

A Study on Forecasting of Inter-Korea Air Passenger Demand Using System Dynamics (시스템 다이내믹스를 이용한 남북한 항공수요 예측에 관한 연구)

  • JiHun Choi;Donguk Won;KyuWang Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.65-75
    • /
    • 2022
  • This study aims to forecast of Air Passenger Demand between South Korea and North Korea using the system dynamics analysis methodology that is based on the system thinking. System dynamics is not only a tool that makes the systematic thought to a model but also a computer program-based analysis methodology that mathematically models the system varying according to time variation. This study analyzed the causal relationship based on the interrelation among variables and structured them by considering various variables that affect aviation cooperation from the perspective of Air passenger demand forecasting. In addition, based on the causal relationship between variables, this study also completed the causal loop diagram that forms a feedback loop, constructed the stock-flow diagram of Inter-Korean model using Vensim program. In this study, Air passenger demand was using by the simulation variable value into System Dynamics. This study was difficult to reflect the various variables constituting the North Korea environment, and there is a limit to the occurrence of events in North Korea.

Simulating Carbon Storage Dynamics of Trees on the Artificial Ground (시뮬레이션을 통한 인공지반 교목의 탄소저장량 변화)

  • You, Soo-Jin;Song, Ki-Hwan;Park, Samuel;Kim, Se-Young;Chon, Jin-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.11-22
    • /
    • 2017
  • To successfully create a low-carbon landscape in order to become a low-carbon city, it is necessary to understand the dynamics of artificial greening's resources on a multi-scale. Additionally, the effects of carbon storage should be quantitatively evaluated. The purpose of this study is to simulate and evaluate the changes in carbon storages of artificial ground trees using system dynamics throughout a long-term period. The process consisted of analyzing the dynamics of the multi-scale carbon cycle by using a casual loop diagram as well as simulating carbon storage changes in the green roof of the Gangnam-gu office building in 2008, 2018, 2028, and 2038. Results of the study are as follows. First, the causal loop diagram representing the relationship between the carbon storage of the artificial ground trees and the urban carbon cycle demonstrates that the carbon storage of the trees possess mutual cross-scale dynamics. Second, the main variables for the simulation model collected 'Biomass,' 'Carbon storage,' 'Dead organic matter,' and 'Carbon absorption,'and validated a high coefficient of determination, the value being ($R^2$=0.725, p<0.05). Third, as a result of the simulation model, we found that the variation in ranking of tree species was changing over time. This study also suggested the specific species of tree-such as Acer palmatum var. amoenum, Pinus densiflora, and Betula platyphylla-are used to improve the carbon storage in the green roof of the Gangnam-gu office building. This study can help contribute to developing quantitative and scientific criteria when designing, managing, and developing programs on low-carbon landscapes.