메타 학습(meta learning)이란 즉각적으로 아는 것과 모르는 것을 구별하는 메타 인지로 적은 양의 데이터로 스스로 학습하고, 학습한 정보와 알고리즘으로 새로운 문제에 적응하며 해결하는 학습 방식이다. 그 중, few-shot 학습 방법은 메타 학습 방법의 한 종류로 매우 적은 학습 데이터 (support set)으로도 질의 데이터(query set)를 올바르게 예측하도록 하는 학습 방법이다. 본 연구에서는 각 클래스의 mean-point vector로 생성한 프로토타입의 한계점인 높은 밀도값을 낮추면서 이상치(outlier)값을 극복하는 방법을 제안한다. 제안한 방법은 기존의 방법을 해결하기 위해, 딥러닝 모델에서 feature를 추출하고, 획득한 feature사이의 요소별로 중앙값 계산하여 프로토타입을 생성하는 방법을 사용한다. 그 후, 앞서 생성한 중앙값 프로토타입을 기반으로 few-shot 학습 방법에 사용한다. 제안한 방법의 정량적인 평가를 위해 필체 인식 데이터셋을 사용하여 기존의 방법과 비교하였다. 실험 결과를 통해 기존의 방법보다 향상된 성능을 내는 것을 확인할 수 있었다.
최근 정보통신기술을 농업과 접목해 새로운 가치를 창출하는 스마트팜 연구가 활발하게 진행되고 있다. 국내 스마트팜 기술이 농업 선진국 수준의 생산성을 가지기 위해서는 기계 학습을 활용한 자동화된 의사결정이 필요하다. 그러나 현재의 스마트 온실 데이터 수집 기술은 빅데이터 분석이나 기계 학습을 수행하기에 충분하지 않다. 본 논문에서는 자율 기계 학습을 위한 스마트 온실 데이터 전처리 시스템을 설계하고 구현한다. 제안하는 시스템은 대상 데이터를 다양한 전처리 기법에 적용하고 평가를 수행하여 최적 전처리 기법을 탐색하고 저장한다. 이렇게 탐색 된 최적 전처리 기법은 새롭게 수집된 데이터에 대하여 전처리를 수행하는데 활용된다.
본 연구에서는 음성감정인식의 적용 가능성과 실용성 향상을 위해 적은 수의 파라미터를 가지는 새로운 경량화 모델 RoutingConvNet(Routing Convolutional Neural Network)을 제안한다. 제안모델은 학습 가능한 매개변수를 줄이기 위해 양방향 MFCC(Mel-Frequency Cepstral Coefficient)를 채널 단위로 연결해 장기간의 감정 의존성을 학습하고 상황 특징을 추출한다. 저수준 특징 추출을 위해 경량심층 CNN을 구성하고, 음성신호에서의 채널 및 공간 신호에 대한 정보 확보를 위해 셀프어텐션(Self-attention)을 사용한다. 또한, 정확도 향상을 위해 동적 라우팅을 적용해 특징의 변형에 강인한 모델을 구성하였다. 제안모델은 음성감정 데이터셋(EMO-DB, RAVDESS, IEMOCAP)의 전반적인 실험에서 매개변수 감소와 정확도 향상을 보여주며 약 156,000개의 매개변수로 각각 87.86%, 83.44%, 66.06%의 정확도를 달성하였다. 본 연구에서는 경량화 대비 성능 평가를 위한 매개변수의 수, 정확도간 trade-off를 계산하는 지표를 제안하였다.
최근 지능형 관제 시스템은 다양한 응용 분야에서 빠르게 발전하고 있으며, 딥러닝, IoT, 클라우드 컴퓨팅 등의 기술이 지능형 관제 시스템에 활용하는 방안이 연구되고 있다. 지능형 관제 시스템에서 중요한 기술은 영상에서 객체를 인식하고 추적하는 것이다. 그러나 기존의 다중 객체 추적 기술은 정확도 및 속도에서 문제점을 가지고 있다. 본 논문에서는 객체 추적의 정확성을 높이고, 객체가 서로 겹쳐있거나 동일한 클래스에 속하는 객체들이 많을 경우에도 빠르고 정확하게 추적 가능한 원샷 아키텍처 기반의 YOLO v5와 YOLO v6을 사용하여 실시간 지능형 관제시스템을 구현하였다. 실험은 YOLO v5와 YOLO v6를 비교하여 평가하였다. 실험결과 YOLO v6 모델이 지능형 관제시스템에 적합한 성능을 보여주고 있다. 실험결과 YOLO v6 모델이 지능형 관제시스템에 적합한 성능을 보여주고 있다.
본 연구는 대화형 추천 시스템인 다중 목표 대화형 추천 시스템(MG-CRS)에서 사용되는 다양한 사전 학습된 언어 모델들을 고찰하고, 각 언어모델의 성능을 비교하고 분석한다. 특히, 언어 모델의 크기가 다중 목표 대화형 추천 시스템의 성능에 어떤 영향을 미치는지에 대해 살펴본다. BERT, GPT2, 그리고 BART의 세 종류의 언어모델을 대상으로 하여, 대표적인 다중 목표 대화형 추천 시스템 데이터셋인 DuRecDial 2.0에서 '타입 예측'과 '토픽 예측'의 정확도를 측정하고 비교한다. 실험 결과, 타입 예측에서는 모든 모델이 뛰어난 성능을 보였지만, 토픽예측에서는 모델 간에 혹은 사이즈에 따라 성능 차이가 관찰되었다. 이러한 결과를 바탕으로 다중 목표 대화형 추천 시스템의 성능 향상을 위한 방향을 제시한다.
코로나19로 인해 넷플릭스 사용량이 증가하면서 사용자들의 넷플릭스 서비스 경험도 함께 증가하였다. 이에 본 연구는 코로나19 대유행 전후 넷플릭스 사용자 경험과 서비스 변화를 살펴보기 위하여, 넷플릭스 리뷰 데이터를 기반으로 토픽 모델링 분석을 수행하고자 한다. Google Play Scraper 라이브러리를 사용하여 구글 플레이 스토어 내의 넷플릭스 앱 리뷰 데이터를 수집하여, 코로나19 대유행 전후 앱 리뷰 기반의 토픽 모델링을 활용하여 키워드 차이를 살펴보았다. 분석 결과 넷플릭스 앱 기능, 넷플릭스 콘텐츠, 넷플릭스 서비스 이용, 넷플릭스 총평이라는 4가지 토픽으로 나타났다. 사용자 경험이 증가한 코로나19 대유행 이후 사용자들은 더 다양하고 세부적인 키워드를 사용하여 리뷰를 작성하는 경향을 보였다. 본 연구는 넷플릭스 리뷰 데이터를 활용하여 사용자들의 의견을 분석하여 코로나19 대유행 전·후 넷플릭스 서비스의 사용자 경험 변화를 보여주므로, 향후 치열한 OTT 서비스 시장에서의 경쟁력 강화를 위한 가이드 라인으로 활용할 수 있을 것이다.
학습된 머신러닝은 시간 경과에 따른 학습 모델과 학습 데이터 측면의 표류 현상이 발생과 동시에 머신러닝의 성능이 퇴화하게 된다. 이를 해결하기 위한 방안으로 머신러닝의 재학습 시기를 결정하기 위한 ML 표류의 개념과 평가 방법을 제안하고자 한다. 딸기와 선명도에 따른 XAI 테스트 및 사과 이미지의 XAI 테스트를 진행하였다. 딸기의 경우 선명도 값에 따른 ML 모델의 XAI 분석의 변화는 미미하였으며 사과 이미지의 XAI의 경우 사과는 정상적으로 객체 분류 및 히트맵 영역을 표시하였으나 사과꽃 및 꽃봉오리의 경우 그 결과가 딸기나 사과에 비해 미미하였다. 이는 사과꽃 및 꽃봉오리의 학습 이미지 수가 부족하기에 발생한 것으로 예상되며 추후 더 많은 사과꽃 및 꽃봉오리 이미지를 학습하여 테스트할 계획이다.
2020년 발생한 코로나19는 전세계적으로 지속적인 피해를 미쳤으며, 특히 하늘길 봉쇄 및 외출 자제로 인해 스마트 관광산업은 경제적 직격탄을 맞았다. 해외여행과 국내여행이 크게 감소된 상황에서 계속되는 적자로 인해 휴업과 폐업을 하는 관광호텔들이 늘어나고 있는 상황이다. 따라서 본 연구에서는 행정안전부의 인허가 데이터를 수집한 후 시각화하여 관광숙박업의 운영 현황을 파악하였다. 머신러닝 분류 알고리즘을 적용하여 관광호텔의 생존 예측 모델을 구현하였고 앙상블 알고리즘을 활용하여 예측 모델의 성능을 최적화하였으며 5-Fold 교차검증으로 모델의 성능을 평가하였다. 관광호텔의 생존율이 다소 감소할 것으로 예측되었으나 실제 생존율을 코로나19 이전과 큰 차이를 보이지 않는 것으로 분석되었다. 본 논문의 호텔업 영업 상태 예측을 통해 관광숙박업 전체의 운영 가능성 및 발전 동향을 파악할 수 있는 근거로 활용할 수 있다.
추천 시스템은 사용자가 아이템에 남긴 익스플리싯 또는 임플리싯 피드백을 바탕으로 각 사용자가 선호할 법한 아이템들을 추천하는 기술이다. 최근, 추천 시스템에 사용되는 딥 러닝 기반 모델의 사이즈가 커짐에 따라, 높은 추천 정확도를 유지하며 추론 시간은 줄이기 위한 목적의 연구가 활발히 진행되고 있다. 대표적으로 지식증류기법을 이용한 추천 시스템에 관한 연구가 있으며, 지식증류기법이란 큰 사이즈의 모델(즉, 교사)로부터 추출된 지식을 통해 작은 사이즈의 모델(즉, 학생)을 학습시킨 뒤, 학습이 끝난 작은 사이즈의 모델을 추천 모델로서 이용하는 방법이다. 추천 시스템을 위한 지식증류기법들에 관한 기존의 연구들은 주로 임플리싯 피드백 환경만을 대상으로 수행되어 왔었으며, 본 논문에서 우리는 이들을 익스플리싯 피드백 환경에 적용할 경우의 성능 및 정확도를 관찰하고자 한다. 실험을 위해 우리는 총 5개의 최신 지식증류기법들과 3개의 실세계 데이터셋을 사용하였다.
물리적 공간과 디지털 공간의 결합인 메타버스는 초연결적, 초실감적 서비스를 기반으로 많은 소비자들에게 이전과 다른 탐색, 평가, 소비 그리고 처분의 과정을 제공하고 있다. 따라서 시공간을 초월한 새로운 형태의 디지털 공간인 메타버스 안에서 고객들이 다양한 활동을 수행할 때, 어떠한 감각적 경험을 느끼게 되고 이러한 경험이 고객들의 행동적 반응에 어떻게 영향을 미치는가를 살펴볼 필요가 있다. 본 연구에서는 의료관광 서비스를 경험하는 고객들이 메타버스 체험 여정에서 느끼는 메타버스 서비스 환경의 시간적, 정서적 경험을 고려하였다. 연구결과 메타버스를 통한 정서적 경험은 메타버스 체험의 강도가 깊어질수록 고객만족과 고객충성도에 더 긍정적인 영향을 미치는 것으로 나타났다. 특히, 메타버스 서비스 종료 시점에서의 정서적 경험은 이후 재구매 행동에도 긍정적 영향력이 있음을 확인하였다. 이러한 결과는 현실 세계에서처럼 메타버스에서의 고객경험은 고객들의 사후적 행동을 이해하는 데 중요한 통찰력을 제공해 주며, 서비스 제공자들이 메타버스 환경에서 효과적인 고객경험 전략을 어떻게 개발하고 구현할 것인가에 대한 의미 있는 시사점을 제공하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.