• 제목/요약/키워드: 저널평가

검색결과 772건 처리시간 0.019초

Support set의 중앙값 prototype을 활용한 few-shot 학습 (Few-shot learning using the median prototype of the support set)

  • 백으뜸
    • 스마트미디어저널
    • /
    • 제12권1호
    • /
    • pp.24-31
    • /
    • 2023
  • 메타 학습(meta learning)이란 즉각적으로 아는 것과 모르는 것을 구별하는 메타 인지로 적은 양의 데이터로 스스로 학습하고, 학습한 정보와 알고리즘으로 새로운 문제에 적응하며 해결하는 학습 방식이다. 그 중, few-shot 학습 방법은 메타 학습 방법의 한 종류로 매우 적은 학습 데이터 (support set)으로도 질의 데이터(query set)를 올바르게 예측하도록 하는 학습 방법이다. 본 연구에서는 각 클래스의 mean-point vector로 생성한 프로토타입의 한계점인 높은 밀도값을 낮추면서 이상치(outlier)값을 극복하는 방법을 제안한다. 제안한 방법은 기존의 방법을 해결하기 위해, 딥러닝 모델에서 feature를 추출하고, 획득한 feature사이의 요소별로 중앙값 계산하여 프로토타입을 생성하는 방법을 사용한다. 그 후, 앞서 생성한 중앙값 프로토타입을 기반으로 few-shot 학습 방법에 사용한다. 제안한 방법의 정량적인 평가를 위해 필체 인식 데이터셋을 사용하여 기존의 방법과 비교하였다. 실험 결과를 통해 기존의 방법보다 향상된 성능을 내는 것을 확인할 수 있었다.

자율 기계 학습을 위한 효과적인 스마트 온실 데이터 전처리 시스템 (An Effective Smart Greenhouse Data Preprocessing System for Autonomous Machine Learning)

  • 임종태;;김윤아;백정현;유재수
    • 스마트미디어저널
    • /
    • 제12권1호
    • /
    • pp.47-53
    • /
    • 2023
  • 최근 정보통신기술을 농업과 접목해 새로운 가치를 창출하는 스마트팜 연구가 활발하게 진행되고 있다. 국내 스마트팜 기술이 농업 선진국 수준의 생산성을 가지기 위해서는 기계 학습을 활용한 자동화된 의사결정이 필요하다. 그러나 현재의 스마트 온실 데이터 수집 기술은 빅데이터 분석이나 기계 학습을 수행하기에 충분하지 않다. 본 논문에서는 자율 기계 학습을 위한 스마트 온실 데이터 전처리 시스템을 설계하고 구현한다. 제안하는 시스템은 대상 데이터를 다양한 전처리 기법에 적용하고 평가를 수행하여 최적 전처리 기법을 탐색하고 저장한다. 이렇게 탐색 된 최적 전처리 기법은 새롭게 수집된 데이터에 대하여 전처리를 수행하는데 활용된다.

RoutingConvNet: 양방향 MFCC 기반 경량 음성감정인식 모델 (RoutingConvNet: A Light-weight Speech Emotion Recognition Model Based on Bidirectional MFCC)

  • 임현택;김수형;이귀상;양형정
    • 스마트미디어저널
    • /
    • 제12권5호
    • /
    • pp.28-35
    • /
    • 2023
  • 본 연구에서는 음성감정인식의 적용 가능성과 실용성 향상을 위해 적은 수의 파라미터를 가지는 새로운 경량화 모델 RoutingConvNet(Routing Convolutional Neural Network)을 제안한다. 제안모델은 학습 가능한 매개변수를 줄이기 위해 양방향 MFCC(Mel-Frequency Cepstral Coefficient)를 채널 단위로 연결해 장기간의 감정 의존성을 학습하고 상황 특징을 추출한다. 저수준 특징 추출을 위해 경량심층 CNN을 구성하고, 음성신호에서의 채널 및 공간 신호에 대한 정보 확보를 위해 셀프어텐션(Self-attention)을 사용한다. 또한, 정확도 향상을 위해 동적 라우팅을 적용해 특징의 변형에 강인한 모델을 구성하였다. 제안모델은 음성감정 데이터셋(EMO-DB, RAVDESS, IEMOCAP)의 전반적인 실험에서 매개변수 감소와 정확도 향상을 보여주며 약 156,000개의 매개변수로 각각 87.86%, 83.44%, 66.06%의 정확도를 달성하였다. 본 연구에서는 경량화 대비 성능 평가를 위한 매개변수의 수, 정확도간 trade-off를 계산하는 지표를 제안하였다.

지능형 관제시스템을 위한 딥러닝 기반의 다중 객체 분류 및 추적에 관한 연구 (Research of Deep Learning-Based Multi Object Classification and Tracking for Intelligent Manager System)

  • 이준환
    • 스마트미디어저널
    • /
    • 제12권5호
    • /
    • pp.73-80
    • /
    • 2023
  • 최근 지능형 관제 시스템은 다양한 응용 분야에서 빠르게 발전하고 있으며, 딥러닝, IoT, 클라우드 컴퓨팅 등의 기술이 지능형 관제 시스템에 활용하는 방안이 연구되고 있다. 지능형 관제 시스템에서 중요한 기술은 영상에서 객체를 인식하고 추적하는 것이다. 그러나 기존의 다중 객체 추적 기술은 정확도 및 속도에서 문제점을 가지고 있다. 본 논문에서는 객체 추적의 정확성을 높이고, 객체가 서로 겹쳐있거나 동일한 클래스에 속하는 객체들이 많을 경우에도 빠르고 정확하게 추적 가능한 원샷 아키텍처 기반의 YOLO v5와 YOLO v6을 사용하여 실시간 지능형 관제시스템을 구현하였다. 실험은 YOLO v5와 YOLO v6를 비교하여 평가하였다. 실험결과 YOLO v6 모델이 지능형 관제시스템에 적합한 성능을 보여주고 있다. 실험결과 YOLO v6 모델이 지능형 관제시스템에 적합한 성능을 보여주고 있다.

다중목표 대화형 추천시스템을 위한 사전 학습된 언어모델들에 대한 성능 평가 (Performance Evaluation of Pre-trained Language Models in Multi-Goal Conversational Recommender Systems)

  • 김태호;장형준;김상욱
    • 스마트미디어저널
    • /
    • 제12권6호
    • /
    • pp.35-40
    • /
    • 2023
  • 본 연구는 대화형 추천 시스템인 다중 목표 대화형 추천 시스템(MG-CRS)에서 사용되는 다양한 사전 학습된 언어 모델들을 고찰하고, 각 언어모델의 성능을 비교하고 분석한다. 특히, 언어 모델의 크기가 다중 목표 대화형 추천 시스템의 성능에 어떤 영향을 미치는지에 대해 살펴본다. BERT, GPT2, 그리고 BART의 세 종류의 언어모델을 대상으로 하여, 대표적인 다중 목표 대화형 추천 시스템 데이터셋인 DuRecDial 2.0에서 '타입 예측'과 '토픽 예측'의 정확도를 측정하고 비교한다. 실험 결과, 타입 예측에서는 모든 모델이 뛰어난 성능을 보였지만, 토픽예측에서는 모델 간에 혹은 사이즈에 따라 성능 차이가 관찰되었다. 이러한 결과를 바탕으로 다중 목표 대화형 추천 시스템의 성능 향상을 위한 방향을 제시한다.

사용자 경험과 서비스 평가의 변화에 관한 연구 - 넷플릭스 앱 리뷰 토픽 모델링을 통해 (A study of changes in user experience and service evaluation - Topic modeling of Netflix app reviews)

  • 유선영;노미진;김양석;한무명초
    • 스마트미디어저널
    • /
    • 제12권6호
    • /
    • pp.27-34
    • /
    • 2023
  • 코로나19로 인해 넷플릭스 사용량이 증가하면서 사용자들의 넷플릭스 서비스 경험도 함께 증가하였다. 이에 본 연구는 코로나19 대유행 전후 넷플릭스 사용자 경험과 서비스 변화를 살펴보기 위하여, 넷플릭스 리뷰 데이터를 기반으로 토픽 모델링 분석을 수행하고자 한다. Google Play Scraper 라이브러리를 사용하여 구글 플레이 스토어 내의 넷플릭스 앱 리뷰 데이터를 수집하여, 코로나19 대유행 전후 앱 리뷰 기반의 토픽 모델링을 활용하여 키워드 차이를 살펴보았다. 분석 결과 넷플릭스 앱 기능, 넷플릭스 콘텐츠, 넷플릭스 서비스 이용, 넷플릭스 총평이라는 4가지 토픽으로 나타났다. 사용자 경험이 증가한 코로나19 대유행 이후 사용자들은 더 다양하고 세부적인 키워드를 사용하여 리뷰를 작성하는 경향을 보였다. 본 연구는 넷플릭스 리뷰 데이터를 활용하여 사용자들의 의견을 분석하여 코로나19 대유행 전·후 넷플릭스 서비스의 사용자 경험 변화를 보여주므로, 향후 치열한 OTT 서비스 시장에서의 경쟁력 강화를 위한 가이드 라인으로 활용할 수 있을 것이다.

학습된 머신러닝의 표류 현상에 관한 고찰 (A Study on Drift Phenomenon of Trained ML)

  • 신병춘;차윤석;김채윤;차병래
    • 스마트미디어저널
    • /
    • 제11권7호
    • /
    • pp.61-69
    • /
    • 2022
  • 학습된 머신러닝은 시간 경과에 따른 학습 모델과 학습 데이터 측면의 표류 현상이 발생과 동시에 머신러닝의 성능이 퇴화하게 된다. 이를 해결하기 위한 방안으로 머신러닝의 재학습 시기를 결정하기 위한 ML 표류의 개념과 평가 방법을 제안하고자 한다. 딸기와 선명도에 따른 XAI 테스트 및 사과 이미지의 XAI 테스트를 진행하였다. 딸기의 경우 선명도 값에 따른 ML 모델의 XAI 분석의 변화는 미미하였으며 사과 이미지의 XAI의 경우 사과는 정상적으로 객체 분류 및 히트맵 영역을 표시하였으나 사과꽃 및 꽃봉오리의 경우 그 결과가 딸기나 사과에 비해 미미하였다. 이는 사과꽃 및 꽃봉오리의 학습 이미지 수가 부족하기에 발생한 것으로 예상되며 추후 더 많은 사과꽃 및 꽃봉오리 이미지를 학습하여 테스트할 계획이다.

스마트관광 시대의 관광숙박업 영업 예측 모형: 코로나19 팬더믹을 중심으로 (Predictive Models for the Tourism and Accommodation Industry in the Era of Smart Tourism: Focusing on the COVID-19 Pandemic)

  • 조유진;김차미;손승연;노미진
    • 스마트미디어저널
    • /
    • 제12권8호
    • /
    • pp.18-25
    • /
    • 2023
  • 2020년 발생한 코로나19는 전세계적으로 지속적인 피해를 미쳤으며, 특히 하늘길 봉쇄 및 외출 자제로 인해 스마트 관광산업은 경제적 직격탄을 맞았다. 해외여행과 국내여행이 크게 감소된 상황에서 계속되는 적자로 인해 휴업과 폐업을 하는 관광호텔들이 늘어나고 있는 상황이다. 따라서 본 연구에서는 행정안전부의 인허가 데이터를 수집한 후 시각화하여 관광숙박업의 운영 현황을 파악하였다. 머신러닝 분류 알고리즘을 적용하여 관광호텔의 생존 예측 모델을 구현하였고 앙상블 알고리즘을 활용하여 예측 모델의 성능을 최적화하였으며 5-Fold 교차검증으로 모델의 성능을 평가하였다. 관광호텔의 생존율이 다소 감소할 것으로 예측되었으나 실제 생존율을 코로나19 이전과 큰 차이를 보이지 않는 것으로 분석되었다. 본 논문의 호텔업 영업 상태 예측을 통해 관광숙박업 전체의 운영 가능성 및 발전 동향을 파악할 수 있는 근거로 활용할 수 있다.

익스플리싯 피드백 환경에서 추천 시스템을 위한 최신 지식증류기법들에 대한 성능 및 정확도 평가 (State-of-the-Art Knowledge Distillation for Recommender Systems in Explicit Feedback Settings: Methods and Evaluation)

  • 배홍균;김지연;김상욱
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.89-94
    • /
    • 2023
  • 추천 시스템은 사용자가 아이템에 남긴 익스플리싯 또는 임플리싯 피드백을 바탕으로 각 사용자가 선호할 법한 아이템들을 추천하는 기술이다. 최근, 추천 시스템에 사용되는 딥 러닝 기반 모델의 사이즈가 커짐에 따라, 높은 추천 정확도를 유지하며 추론 시간은 줄이기 위한 목적의 연구가 활발히 진행되고 있다. 대표적으로 지식증류기법을 이용한 추천 시스템에 관한 연구가 있으며, 지식증류기법이란 큰 사이즈의 모델(즉, 교사)로부터 추출된 지식을 통해 작은 사이즈의 모델(즉, 학생)을 학습시킨 뒤, 학습이 끝난 작은 사이즈의 모델을 추천 모델로서 이용하는 방법이다. 추천 시스템을 위한 지식증류기법들에 관한 기존의 연구들은 주로 임플리싯 피드백 환경만을 대상으로 수행되어 왔었으며, 본 논문에서 우리는 이들을 익스플리싯 피드백 환경에 적용할 경우의 성능 및 정확도를 관찰하고자 한다. 실험을 위해 우리는 총 5개의 최신 지식증류기법들과 3개의 실세계 데이터셋을 사용하였다.

메타버스에서의 정서적 경험이 고객반응에 미치는 효과: 의료관광서비스를 중심으로 (The effect of emotional experience on customer response in the Metaverse: Focusing on medical tourism services)

  • 황윤용;김미라
    • 스마트미디어저널
    • /
    • 제13권2호
    • /
    • pp.156-164
    • /
    • 2024
  • 물리적 공간과 디지털 공간의 결합인 메타버스는 초연결적, 초실감적 서비스를 기반으로 많은 소비자들에게 이전과 다른 탐색, 평가, 소비 그리고 처분의 과정을 제공하고 있다. 따라서 시공간을 초월한 새로운 형태의 디지털 공간인 메타버스 안에서 고객들이 다양한 활동을 수행할 때, 어떠한 감각적 경험을 느끼게 되고 이러한 경험이 고객들의 행동적 반응에 어떻게 영향을 미치는가를 살펴볼 필요가 있다. 본 연구에서는 의료관광 서비스를 경험하는 고객들이 메타버스 체험 여정에서 느끼는 메타버스 서비스 환경의 시간적, 정서적 경험을 고려하였다. 연구결과 메타버스를 통한 정서적 경험은 메타버스 체험의 강도가 깊어질수록 고객만족과 고객충성도에 더 긍정적인 영향을 미치는 것으로 나타났다. 특히, 메타버스 서비스 종료 시점에서의 정서적 경험은 이후 재구매 행동에도 긍정적 영향력이 있음을 확인하였다. 이러한 결과는 현실 세계에서처럼 메타버스에서의 고객경험은 고객들의 사후적 행동을 이해하는 데 중요한 통찰력을 제공해 주며, 서비스 제공자들이 메타버스 환경에서 효과적인 고객경험 전략을 어떻게 개발하고 구현할 것인가에 대한 의미 있는 시사점을 제공하고 있다.