• Title/Summary/Keyword: 재활용성평가

Search Result 445, Processing Time 0.032 seconds

Performance Evaluation of Removable PC Slab Connection for the Reusable Steel Structural System (강구조 재사용 시스템을 위한 탈부착이 가능한 PC 슬래브 접합부의 성능평가)

  • Shim, Hyun Ju;Oh, Eun Ji;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.649-658
    • /
    • 2013
  • Recently, an urgent issue of the global environment in the 21st century is the well-established paradigm of a sustainable and circulatory system. In the field of construction, it is important to approach sustainablity issues from a structural engineering point of view. The reusable steel structural system, which can adapt to changes in socio-economic conditions and varied demands, realized that the consumption of natural resources was minimized, the environmental load was reduced as much as possible. In order to reuse and recombinant the structural members, removable PC slab connection was introduced. This paper investigates the structural performance and serviceability by the dynamic characteristics of the steel beam to concrete slab connection.

Upcycling of Waste Jelly-Filled Communication Cables (폐 젤리충진 통신케이블 업사이클링 연구)

  • Cho, Sungsu;Lee, Sooyoung;Hong, Myunghwan;Seo, Minhye;Lee, Dukhee;Uhm, Sunghyun
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 2015
  • A feasibility test was carried out for upcycling of waste jelly-filled communication cables together with the development of environmentally friendly processes and equipments. High pressure water injection is proved to be an exceptionally environmentally friendly and highly efficient mechanical process. A batch-type cable barking equipment is designed and built on the basis of computational fluid dynamics modelling. It is optimized in terms of energy consumption and productivity with very high copper recovery of 99.5%. Copper nano-powder is prepared by an electrical wire explosion in ethanol media in order to improve the value of final products, and the preliminary economical assessment is also conducted.

Performance Evaluation of Admixture for Durability Improvement of Shielding Materials Used Waste Glass as Fine Aggregate (폐유리를 잔골재로 사용한 차폐채움재의 내구성 개선을 위한 혼화재료의 성능평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung;Song, Yong-Soon;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.20-27
    • /
    • 2019
  • Compared to the development and manufacturing technology of electronic goods, the development of waste glass recycling technology is relatively insufficient, leading to the acceleration of waste of resources and environmental pollution. Although waste glass recycling technology is being actively developed overseas, waste glass recycling technology is insufficient in Korea, leading to the illegal dumping or burial of waste glass. Waste glass has been confirmed to have pozzolan reaction potential when having hydration reaction with cement. Waste glass is also reported to be effective in reducing bleeding and inhibiting the development of hydration heat by improving the physical properties of concrete and the rheology properties of fresh concrete. Therefore, this paper analyzed the strength characteristics and the effect of alkalic-silica reaction on the expansion of shielding concrete that used waste glass as fine aggregate. Where, suitable admixture materials were used as a measure to suppress the expansion.

Evaluation for Properties of Domestic Pond Ash Aggregate and Durability Performance in Pond Ash Concrete (국산 매립회의 골재특성 평가 및 매립회 콘크리트의 내구 성능 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.311-320
    • /
    • 2011
  • Fly ash (FA), byproduct from power plant has been actively used as mineral admixture for concrete. However, since bottom ash (BA) is usually used for land reclaim or subbase material, more active reuse plan is needed. Pond ash (PA) obtained from reclaimed land is mixed with both FA and BA. In this study, 6 PA from different domestic power plant are prepared and 5 different replacement ratios (10%, 20%, 30%, 50%, and 70%) for fine aggregate substitutes are considered to evaluate engineering properties of PA as fine aggregate and durability performance of PA concrete. Tests for fine aggregate of PA for fineness modulus, density and absorption, soundness, chloride and toxicity content, and alkali aggregate reaction are performed. For PA concrete, durability tests for compressive strength, drying shrinkage, chloride penetration/diffusion, accelerated carbonation, and freezing/thawing are performed. Also, basic tests for fresh concrete like slump and air content are performed. Although PA has lower density and higher absorption, its potential as a replacement material for fine aggregate is promising. PA concrete shows a reasonable durability performance with higher strength with higher replacement ratio. Finally, best PA among 6 samples is selected through quantitative classification, and limitation of PA concrete application is understood based on the test results. Various tests for engineering properties of PA and PA concrete are discussed in this paper to evaluate its application to concrete structure.

Reclamation of Closed Non-Sanitary Landfills by Sorting Transfer Control (선별이적처리를 통한 사용종료 비위생매립지 정비방안 연구)

  • Kim, Dongoh;Kim, Taekyoung;Kim, Mihwa;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • The aim of this study was an evaluation of closed non-sanitary landfill's stabilization degree and a determination of its an optimal reclamation method. In order to evaluate the stabilization degree, physical compositions of landfill wastes in 21 closed non-sanitary landfills were analyzed. There were 4 major items such as cover soils, organics, combustibles and incombustibles. With respect to the results of physical compositions, it was determined that the waste in 9 sampling sites of closed non-sanitary landfills after 10years of the relief time was not fully stabilized. The closed non-sanitary landfills must be reclaimed as soon as possible. The main material in closed non-sanitary landfills was cover soils and the highest content was 89.96%. Otherwise, the contents in sanitary landfills was small and 9.89~11.12%. Therefore, it was evaluated that the recovered soil by sorting transfer treatment could be reused as on-site cover soils of the reclamating non-sanitary landfills and/or constructing materials.

  • PDF

Hazard Assessment of Explosion in Suspended Dust of Wood (목재 부유분진의 폭발 위험성 평가)

  • Lee, Keun Won;Lee, Su-Hee;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.81-86
    • /
    • 2013
  • Accidents of dust explosion has been occurred in various industries as a plastics, pharmaceuticals, timber, grain storage, solid fuels and chemicals. In this study, the silo dust, hammer mill dust and Nyusong dust in the manufacturing process of the particle board to utilize west wood, which were selected for this experiment and were evaluated the characteristics of dust explosion. The explosion characteristics such as a maximum explosion pressure, explosion index, lower explosive limit, and minimum ignition energy in suspended dust of the wood by Siwek 20 L apparatus were measured and evaluated for the experiment. The results of this study can be used the process safety measures to prevent accidents of fire and explosion in the suspended dust of wood.

A Study on the Performance Evaluation of Reclaimed Asphalt Concrete Mixture with Rejuvenator (재생첨가제를 적용한 순환 아스팔트 콘크리트 혼합물의 공용성능 평가에 관한 연구)

  • Ga, Hyun-Gil;Mun, Sung-Ho
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.125-134
    • /
    • 2022
  • Reclaimed aggregates through waste asphalt are produced and utilized for waste resource utilization. This study conducts quality tests and performance evaluations for mixtures with Rejuvenator applied to reclaimed asphalt concrete. Through quality testing and performance evaluation, the study investigates whether there is any problem in using reclaimed asphalt concrete by replacing general hox mix asphalt. As a result, the values of ordinary hot mix asphalt are similar to those of reclaimed asphalt, suggesting that the substitution does not create critical engineering issues. Using reclaimed asphalt concrete has the advantages of increasing economic efficiency and utilizing waste resources.

Study on the immersion test of geopolymers made by recycling of coal ash (석탄회를 재활용한 지오폴리머 침지실험에 관한 연구)

  • Bang, John J.;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.199-205
    • /
    • 2018
  • A geopolymer was produced from coal ash generated from an integrated gasification combined cycle (IGCC) plant and its water resistance was evaluated. For this purpose, the geopolymer specimens were immersed in water for 30 days to measure changes in microstructure and alkalinity of the immersion liquid. Particularly, the experiment was carried out with foaming status of the geopolymers and parameters of room temperature aging condition, and immersion time. The foamed geopolymer containing 0.1 wt% Si-sludge had pores with a diameter of 1 to 3 mm and exhibited excellent foamability. Also, the calcium-silicate-hydrate crystal phase appeared in the foamed geopolymer. In the geopolymer immersion experiment, the pH of the immersion liquid increased with time, because the un-reacted alkali activator remained was dissolved in the immersion liquid. From the pH change of the immersion liquid, it was found that geopolymer reaction in the foamed specimen was completed faster than the non-foamed specimen. Through this study, it was possible to successfully produce foamed and non-foamed geopolymers recycled from IGCC coal ash. Also the necessary data for the safe application of IGCC coal ash-based geopolymers to areas where water resistance is needed were established; for example, the process conditions for room temperature aging time, effect of foaming status, immersion time and so on.

Grinding Effects of Coal-Fired Pond Ash on Compressive Strength of Geopolymers (화력발전소 매립 석탄재의 분쇄가 지오폴리머의 강도에 미치는 영향)

  • Lee, Sujeong;Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.3-11
    • /
    • 2014
  • Bottom ash from coal fired power plants is not widely used due to a broad range of particle sizes and a high carbon content for producing geopolymers. The effect of mechanical activation on compressive strength of bottom ash- based geopolymers was examined by rod and planetary-ball milling to encourage full-fledged recycling of bottom ash, the main component of pond ash. The amount of amorphous component in the milled ash samples did not change significantly after the mechanical activation. It is presumably because needle-shaped mullite crystals, which is a major crystalline phase and grown in a glassy matrix, possess high strength and toughness, and therefore, they could endure external shocks and remain almost intact. Milling operation, however, decreased the particle size and improved the homogeneity of ash, thereby leading to increase reactivity of milled ash with alkali activators. Rod milling produced a relatively narrow particle size distribution of the milled ash particles; however, it was less effective in reducing the particle size. Nevertheless, it was interesting to observe that rod milling had equal effect on improving the compressive strength of geopolymers up to about 37%, as that of planetary ball milling. Rod milling is believed to be suitable process for enhancing the reactivity of bottom ash for large-scale recycling of bottom ash and producing geopolymers.

Investigation on Economical Feasibility for Energy Business of Waste Water Sludge Discharged in 'A' Industrial Complex (A-산업단지 발생 슬러지의 에너지화를 위한 경제성 검토)

  • Byun, Jung-Joo;Lee, Kang-Soo;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.61-74
    • /
    • 2012
  • Industrial complexes in Korea have been vigorously established by economic development plan and development policy of industry in 1960s. Recently, Korean government has promoted Eco Industrial Park (EIP) project to recycle by-products and wastes in industrial park In this study, we analyzed the physical and chemical properties for the sludges discharged from A industrial complex. And we investigated the economic feasibility and environmental impact of sludge to energy facilities. The analysis results indicated that the petrochemical industry were 92% in sludge production, the highest treatment amount was landfill, followed by incineration and recycling and then ocean disposal. Wastewater sludge and process sludge samples are collected and analyzed to use as basic data on economic feasibility and environmental impact. Weighted average heating value of sludge samples was 3,891kcal/kg. Based on this data, installation and operation costs, operation returns of operating the drying facility are estimated, compared with cogeneration facility. And this study examines how the payback period of each simulation(total 8 case) with the important parameter changes. As a result, it was found that what needs the shortest payback period is 3years with connection of drying facility and cogeneration facility based on the government's financial subsidy system.