• Title/Summary/Keyword: 재조립

Search Result 385, Processing Time 0.027 seconds

Conservation and Reproduction of Cheongpung Buwongun Kim Wumyeong's Funeral Bier (청풍부원군 김우명 상여의 보존 및 복제)

  • Jeong, Jaeung;Huh, Ilkwon;Park, Seungwon;Yi, Yonghee
    • Conservation Science in Museum
    • /
    • v.14
    • /
    • pp.91-113
    • /
    • 2013
  • Cheongpung Buwongun Kim Wu-myeong's Funeral Bier, an important folklore cultural property No.120, possessed by Chuncheon National Museum was donated in 2002 (by Kim Seonggu). It consists of a bier, yoyeo(腰輿), myeongjeongdae(銘旌臺), and manjangdae(輓章臺). It has a high value as the oldest royal bier. The bier which had a resting time in the storage for special exhibition of "The great cultural treasure of Gangwon province" was inspected in September 2012 and colored pigment layer of the wooden part had the risk of peeling off and surface damage of the textile was serious. Therefore, conservation treatment was conducted. In addition, knots and susiks(垂飾) were severely damaged and their exhibition was impossible. Therefore, a reproduction to replace them through a close investigation was made. All parts of the funeral bier were in separation except for the basic furniture. Conservation was made by dividing the parts into wooden parts and textile parts. Yoyeo was reinforced after disassembling bujae from it and then was reassembled. Paraloid B-72 2 wt% (in ethyle acetate), acrylic resin, was applied to the wooden part of the bier in order to reinforce the colored pigment layer with the addition of sodium alginate 2 wt%(in stilled water) and glue 4 wt%(in stilled water). The pollutants on the surface of the textile part were removed (vacuuming) and its creases were smoothed out (steaming). Fat-soluble pollutants were removed using an nonionic surfactant(Saponin, concentration at 0.25 to 0.5 g/𝑙, in de-ionized water). After the disassembly of the yoyeo from the broken wooden, it was bonded with glue (3 wt% for the first gluing, 35 wt% for gluing), and pine wood was used to restore missing parts. In the process of connecting Wongak(雲角), the original metal hinge and nails were reused to complete the assembly.

Non-Destructive Material Analysis and Comparative Study of the Changdeok Palace "Chugudae" and National Designated "Chugudae" (창덕궁 이문원 측우대의 비파괴 재질 분석과 국가지정 측우대와의 비교)

  • Ahn, Yubin;Yoo, Jihyun;Lee, Myeongseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.3
    • /
    • pp.244-257
    • /
    • 2020
  • State-designated rain gauge pedestals, including a rain gauge support, were installed in front of the "Imunwon" at Changdeok Palace, made from various rock types. Some of those pedestals provide exact information on their production dates. These rain gauge pedestals are highly valuable as scientific instruments; however, there has been insufficient scientific research carried out on them. Therefore, precise analysis and conservative consideration are required. As a result of petrographic character analysis, the Changdeokgung rain gauge pedestal has been classified as marble. Furthermore, comparison of the results of P-XRF analysis with GSJ reference samples (JLs-1, JDo-1) has determined it to be dolomitic marble. Applying the same analysis to other state-designated rain gauge pedestals, it was presumed that the rain gauge supports at Gyeongsand-do Provincial Office and Gwansanggam were each made from aplite, pinkish medium-to-coarse biotite granite. Results confirmed that only the Changdeokgung rain gauge pedestal was made from marble. Marble is viewed as having an identity specificity rooted in a certain historical background. According to the tendency towards stone figures being made from marble, especially dolomitic marble, it is necessary to further studies whether particular rocks were used to make royal stone figures in Joseon Dynasty.

Material Characteristics and Deterioration Diagnosis of the Pagoda of Buddhist Priest Jeongjin in Bongamsa Temple, Mungyeong, Korea (문경 봉암사 정진대사원오탑의 재질특성과 훼손도 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Han, Byeong-Il
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.357-369
    • /
    • 2011
  • The Bongamsa Jeongjindaesa Wonotap Pagoda (Treasure No. 171) constructed in the 10th century composed mainly of leucocratic granite with feldspar phenocryst. The major rock-forming minerals are quartz, orthoclase, plagioclase and some biotite. This pogoda is highly damaged physical weathering which are break-out, flakes, exfoliation and cracks. As a result of the infrared thermography on the surface of the pagoda, internal exfoliations occurred to cracks. Also, P-XRF analysis showed that Fe, S, Ca and Mn of concentration were so high in the discoloration parts. The coated part of red pigment has a high five times in Fe content than the fresh rock surface. This result suggests that material of red pigment is hematite. Ultrasonic velocity of the stone properties were from 831 to 2,457 m/s, but it measured velocity of less than 1,000m/s in part of damaged area. Therefore, we suggest for safety conservation for weathered parts of the pagoda, that is in want of rejoin and consolidation treatment about serious damage parts.

Effective Design Pattern and Enterprise Architecture Design Techniques in EJB Environment (EJB기반의 효율적인 설계 패턴 및 엔터프라이즈 아키텍처 설계 기법)

  • 민현기;김수동
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1025-1036
    • /
    • 2003
  • In industry, it is a current trend that systems are developed by using Enterprise JavaBeans(EJB) technology for reducing the cost and the time. Thus, the architecture of EJB is getting more essential to enhance reusability, extensibility and portability of system. However little has been studied in the realm of the practical software architectures for EJB. The architecture has just bean studied in abstract level, but not in concrete level providing the method to substantiate it using the practical J2EE techniques. Just using the EJB technology doesn't guarantee the reusability of the artifacts because EJB specification provides the characteristics and architecture for only fine grained components as session and entity bean. In this paper, we propose the enterprise software architecture for the systems based on EJB and the concrete techniques for implementing that. Also, design patterns of modeling efficient enterprise architecture are represented. By analyzing both the strengths and the weaknesses of suggested design patterns, EJB design patterns which are suitable for each layer of enterprise architecture will be identified. Through the component which design patterns are applied, the architecture can support the optimized relationship between the components. Five techniques for designing components from fine grained to coarse grained based on EJB technology, and architecture design techniques including transaction and assembling techniques are proposed.

Field Appliciability Evaluation of Eco-friendly Mixed Soil (친환경 혼합토의 현장적용성 평가)

  • Park, Kyungsik;Oh, Sewook;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • In the present study, it were performed an unconfined compression test and a field applicability test according to a mixed ratio of SS, soil type and curing period to analyze strength and deformation characteristic in order to evaluate engineering characteristics of soil mixed pavements using the eco-friendly soil stabilizer (SS). The test results revealed that SS mixed soil shows fast strength development at the initial curing time while 28-day strength amounted for 97% of the final strength. Furthermore, coarse-grained dredged sand (DS) and weathered granitic soil (WGS) have a larger ratio of deformation coefficient with respect to unconfined compressive strength than fine-grained dredged clay (DC) and organic soil (OS). Moreover, a comparison test between natural and forced drying conditions was conducted and test result showed 54% to 67% of strength degradation while having 55% to 63% of strength degradation in the freezing and thawing test result. Finally, a repeated loading test result showed that DS experiences up to 35% of strength reduction compared to initial strength under 10,000 times loading in maximum. Thus, it was validated that an appropriate amount of fine-grained sand is necessary to secure resistance capability to repeated loading.

Manufacturing technology and restoration of gilt-bronze shoes from the ancient tombs in Jeongchon Village, Bogam-ri in Naju (나주 복암리 정촌고분 출토 금동신발의 제작기술과 복원)

  • Lee, Hyun-sang;Lee, Hye-Youn;Oh, Dong-sun;Kang, Min-jeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.92-107
    • /
    • 2018
  • In 2013~2016, gilt-bronze shoes were excavated from the ancient tombs in Jeongchon Village located at Bogam-ri, Dasi-myeon in Naju. They are estimated to have been made in the late 5th or early 6th centuries. The gilt-bronze shoes are significant in that they serve to explicate the relationship between the center of Baekje and the local forces in the Yeongsan River Basin. This study's specific focus was the gilt-bronze shoes from the ancient tombs in Jeongchon Village. Based on the findings, a restoration drawing was designed and restored products were manufactured by considering metalwork techniques used to manufacture the original ones. At first, manufacturing techniques were tested by using a scientific analysis and visual observation. The manufacturing method, structures, and patterns of the gilt-bronze shoes were closely examined. Then, a design drawing of gilt-bronze shoes was created through field measurement and they were recreated on the basis of the analysis. The original form of the restored products were manufactured through cutting out the outward form, bore carving, engraving, molding, plating, and an assembly process. In the restoration process, this study examined the formal characteristics of gilt-bronze shoes, manufacturing techniques, and archetypes during Baekje's late Hanseong era. Products restored from this study are expected to be used as achievements for more easily understanding the culture of Baekje.

Investigation on Potential Value for Maritime Cultural Heritage, Historical and Petrographic Characteristics of the Seosan Black Submerged Rocks (Geomenyeo) in Korea (서산 검은여의 역사적 및 암석기재적 특징과 해양유산적 잠재가치 검토)

  • Park, Jun Hyoung;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • The Seosan Geomenyeo(black submerged rocks), once located at the Cheonsuman bay of Buseokmyeon in Seosan, Korea, is a reef rock now exposed on the land surface. The Geomenyeo can also be found in the ancient geographic maps around the area. The local geographic names, like Buseok and Buseoksa temple are derived from the Geomenyeo. It is composed of ultramafic rocks complex and intrusive felsic igneous rocks. These rocks show diverse facies with various petrographic characteristics caused by geological processes such as intrusion and alteration. Ultramafic rocks complex can be roughly categorized as coarse grained ultramafic rocks and medium grained mafic rocks. Both cases are composed of pyroxene and amphibole, showing the general rock facies of pyroxenite, diabase and lamprophyre. Felsic igneous rocks includes pinkish medium grained granite, porphyritic amphibole granite and aplite with varied mineral compositions. The Geomenyeo is the only ultramafic rocks complex in the Cheonsuman Bay; moreover, it has a distinctive geological and scenic value, as well as a symbolic property. In order to preserve the Geomenyeo, it is necessary to investigate and promote it as a designated heritage site through academic studies, and compensate for the convenience and protection facilities. Additionally, the Geomenyeo should be evaluated as a maritime heritage site, due to the unique local culture as it succeeds the recognition of forefathers which regarded it as a local scenic site with significance.

Analysis of Surface Contaminants and Physical Properties of the Daejanggakgibi Stele of Silleuksa Temple using Non-destructive Technology (비파괴 기술을 활용한 여주 신륵사 대장각기비의 표면오염물 분석과 물성진단)

  • KIM, Jiyoung;LEE, Myeongseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.186-197
    • /
    • 2022
  • The Daejanggakgibi Stele of Silleuksa Temple in Yeoju is a stone stele from the Goryeo Dynasty that is inscribed with various stories about the construction of Daejanggak, a place where Buddhist scriptures were kept. This stele has been maintained for a long time in a state in which discoloration of the body has occurred, and the inscription has been partially damaged due to dozens of cracks. Using non-destructive analysis methods for stone artifacts, material investigation, portable X-ray fluorescence analysis, and ultrasonic velocity analysis for the stele were performed. It was confirmed that the stele body was composed of light gray crystalline limestone, and the base stone, support stone, and cover stone were medium-grained biotite granite. Portable X-ray fluorescence analysis confirmed that iron(Fe) was an original coloring element of the stele surface. From the distribution pattern of the coloration, it can be inferred that iron-containing materials flew down from between the stele body and the cover stone. Thereafter, living organisms or organic contaminants attached to it so that yellow and black contaminants were formed. Ultrasonic diagnosis revealed that the physical property of both the front and back surfaces ranged from fresh rocks(FR) to completely weathered rocks(CW), and the average weathering index was grade 3(intermediate). However, the point where cracks developed intensively was judged to be the completely weathered stage(CW), and some cracks located in the upper and lower parts of the stele bear potentially very high risk. It is necessary to monitor the movement of these cracks and establish reinforcement measures for conservation in the future.

Life Cycle Environmental Impacts Benefits Analysis of Remanufactured Injector Considering the Avoided Effect (회피효과를 고려한 인젝터 재제조의 전과정 환경영향 효익 분석)

  • Nam Seok Kim;Young Woon Kim;Yong Woo Hwang;Hong-Yoon Kang;Young Ho Kim
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.94-104
    • /
    • 2024
  • Remanufacturing re-commercializes a used product to achieve an equal or higher performance level than the original product by disassembling, cleaning, inspecting, repairing, reconditioning, and reassembling the used product. The remanufacturing industry is a key industry necessary to realize carbon neutrality by 2050. This study uses life cycle assessment to analyze the resource reduction and greenhouse gas reduction effects with and without considering the avoided effect for an injector, which is an automobile part that is actively being remanufactured. The results of this study showed that the resource reduction effect and greenhouse gas reduction effect induced by injector remanufacturing were reduced by 95.30% and 93.88%, respectively, based on one unit without considering the avoided effect. However, when considering the avoided effect, which in this case is the environmental impact of not disposing of the used injector and not having to use natural resources to manufacture a new injector because the used injector was reused during remanufacturing, the resource reduction effect and greenhouse gas reduction effect were 190.91% and 188.33%, respectively. The results of this study are expected to be used in the future to evaluate the amount of environmental impact reduction while considering the avoided effect during remanufacturing and to help develop research methodology for remanufacturing.

Conservation Status, Construction Type and Stability Considerations for Fortress Wall in Hongjuupseong (Town Wall) of Hongseong, Korea (홍성 홍주읍성 성벽의 보존상태 및 축성유형과 안정성 고찰)

  • Park, Junhyoung;Lee, Chanhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.3
    • /
    • pp.4-31
    • /
    • 2018
  • It is difficult to ascertain exactly when the Hongjuupseong (Town Wall) was first constructed, due to it had undergone several times of repair and maintenance works since it was piled up newly in 1415, when the first year of the reign of King Munjong (the 5th King of the Joseon Dynasty). Parts of its walls were demolished during the Japanese occupation, leaving the wall as it is today. Hongseong region is also susceptible to historical earthquakes for geological reasons. There have been records of earthquakes, such as the ones in 1978 and 1979 having magnitudes of 5.0 and 4.0, respectively, which left part of the walls collapsed. Again, in 2010, heavy rainfall destroyed another part of the wall. The fortress walls of the Hongjuupseong comprise various rocks, types of facing, building methods, and filling materials, according to sections. Moreover, the remaining wall parts were reused in repair works, and characteristics of each period are reflected vertically in the wall. Therefore, based on the vertical distribution of the walls, the Hongjuupseong was divided into type I, type II, and type III, according to building types. The walls consist mainly of coarse-grained granites, but, clearly different types of rocks were used for varying types of walls. The bottom of the wall shows a mixed variety of rocks and natural and split stones, whereas the center is made up mostly of coarse-grained granites. For repairs, pink feldspar granites was used, but it was different from the rock variety utilized for Suguji and Joyangmun Gate. Deterioration types to the wall can be categorized into bulging, protrusion of stones, missing stones at the basement, separation of framework, fissure and fragmentation, basement instability, and structural deformation. Manually and light-wave measurements were used to check the amount and direction of behavior of the fortress walls. A manual measurement revealed the sections that were undergoing structural deformation. Compared with the result of the light-wave measurement, the two monitoring methods proved correlational. As a result, the two measuring methods can be used complementarily for the long-term conservation and management of the wall. Additionally, the measurement system must be maintained, managed, and improved for the stability of the Hongjuupseong. The measurement of Nammunji indicated continuing changes in behavior due to collapse and rainfall. It can be greatly presumed that accumulated changes over the long period reached the threshold due to concentrated rainfall and subsequent behavioral irregularities, leading to the walls' collapse. Based on the findings, suggestions of the six grades of management from 0 to 5 have been made, to manage the Hongjuupseong more effectively. The applied suggested grade system of 501.9 m (61.10%) was assessed to grade 1, 29.5 m (3.77%) to grade 2, 10.4 m (1.33%) to grade 3, 241.2 m (30.80%) and grade 4. The sections with grade 4 concentrated around the west of Honghwamun Gate and the east of the battlement, which must be monitored regularly in preparation for a potential emergency. The six-staged management grade system is cyclical, where after performing repair and maintenance works through a comprehensive stability review, the section returned to grade 0. It is necessary to monitor thoroughly and evaluate grades on a regular basis.