• Title/Summary/Keyword: 재제조 촉매

Search Result 8, Processing Time 0.024 seconds

A Study on the Effectiveness of Remanufacturing Technology for the Diesel Oxidation Catalyst(DOC) Deactivated by Diesel Exhaust Gas (경유차 매연저감장치에 의해 비활성화된 DOC촉매의 재제조 효과에 관한 연구)

  • Park, Hea-Kyung
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2010
  • The deactivated diesel oxidation catalyst(DOC) was remanufactured by ultrasonic wave treatment with various solutions, followed by active component re-impregnation. The catalytic performance and surface properties of remanufactured DOC were studied at various remanufacturing conditions. The proper ultrasonic-wave cleaning time at various solutions and optimal re-impregnation amounts of active component for the best catalytic performance were investigated. The catalytic performance tests on the conversions of CO and THC(total hydrocarbon) were also carried out at various temperatures by catalytic reaction test unit using bypass gas from the diesel engine dynamo system. It was found that the catalytic performance of DOC remanufactured with the high-temperature air washing, ultrasonic wave cleaning at acidic/basic solutions and active component re-impregnation method was recovered to 90% level of its activity compared to that of the fresh DOC, which was caused by removing the deactivating materials from the surface of the DOC through the analyses of catalyst performance test and their characterization by Optical microscope, EDX, ICP, TGA, and porosimeter.

A Study on the Remanufacturing Effect of Aged Three-Way Catalysts (사용후 가솔린 자동차 삼원촉매의 재제조 효과 고찰)

  • Kwak, Seung-Min;Lim, Jong-Sun;Kim, Tae-Won;Park, Hae-Kyoung
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.430-436
    • /
    • 2009
  • Deactivated three-way catalysts which had been exposed to gasoline engine exhaust for a long time were remanufactured by ultra sonic cleaning with distilled water, sulfuric acid solution and impregnation with precious metals (Pt, Pd, Rh). The catalytic properties as well as conversion reactivity of CO, THC and NOx about fresh, aged and remanufactured catalysts were examined. Most of the pollutants deposited on the aged three-way catalysts were removed in the remanufacturing process of those catalysts. At the same time a little amount of precious metals like Pt and Pd were removed in the remanufacturing process. Under the experimental condition used in this study, in the case of the remanufactured catalysts with impregnation of precious metals, the catalytic activities were recovered to almost the same level, or higher level of that of the fresh catalyst.

A Study on the Effectiveness of Remanufacturing Technology for the Catalyzed Diesel Particulate Filter-trap(DPF) Deactivated by Diesel Exhaust Gas (촉매가 담지된 사용후 경유차 매연저감장치 DPF의 재제조 효과에 관한연구)

  • Choi, Kang-Yong;Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.957-964
    • /
    • 2010
  • The deactivated catalyzed diesel particulate filter-trap (DPF) was remanufactured by ultrasonic wave treatment with various prepared solutions, followed by active component re-impregnation, and the emission control performance and surface properties of remanufactured DPF were studied at various remanufacturing conditions. The proper ultrasonic wave cleaning time at various prepared solutions and optimal re-impregnation amounts of active component for the best emission control performance of DPF were investigated and its performance tests were also carried out with various temperatures for the conversions of CO, THC (total hydrocarbon) and PM (particulate matter) by catalytic reaction test unit using bypass gas from the diesel engine dynamo system. It was found that the emission control performance of DPF remanufactured with the high-temperature air washing, ultrasonic wave cleaning at acid/base solutions and active component re-impregnation method was recovered to 95% level of its activity compared to that of the fresh DPF, which was caused by removing the deactivating materials from the surface of the DPF, through the analyses of performance test and their surface characterization by Optical microscope, EDX, ICP, TGA, and porosimeter.

A Study on the Remanufacturing of the Waste Three-way Catalysts (폐삼원촉매의 재제조에 관한 연구)

  • Huh, Been;Park, Hea-Kyung;Lee, Choul-Ho
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.147-153
    • /
    • 2009
  • Waste three-way catalysts were remanufactured by ultrasonic wave treatment followed by active component re-impregnation and the catalytic activities and surface properties of remanufactured catalysts were measured at various remanufacturing conditions. In case of the catalyst prepared by ultrasonic wave cleaning, the optimal period for elimination of surface contaminants from the waste catalyst was found to be about 5 minutes. The proper re-impregnation amounts of the active components for the best catalytic performance were investigated and the catalytic performance tests were also carried out with various temperature for the total hydrocarbon (THC), carbon monoxide (CO) and nitrogen oxides (NOx) conversions. The experimental results showed that the catalytic performances of the remanufactured catalysts were recovered almost the same level as those of the fresh catalyst except those of the NOx conversion.

Remanufacturing of Commercial $V_2O_5-WO_3/TiO_2$ Catalyst used in the SCR Process of Incinerator (소각장 SCR 공정에서 사용되는 상용 $V_2O_5-WO_3/TiO_2$ 촉매의 재제조에 관한 연구)

  • Yoon, Goan-Gu;Yoo, Man-Sik;Lim, Jong-Sun;Kim, Tae-Won;Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.970-977
    • /
    • 2005
  • The commercial $V_2O_5-WO_3/TiO_2$ catalysts which had been exposed to the off gas from incinerator for a long time were remanufactured by washing with distilled water and arid solution and reimpregnation with catalytic active components($V_2O_5-WO_3$). The catalytic properties and NOx conversion reactivity of those catalysts were examined by analysis equipment and NOx conversion experiment. Under the experimental condition used in this study, the remanufactured catalysts activated by distilled water ultra sonic cleaning, the catalytic activity was recovered in the range of $66{\sim}93%$ of that of the fresh and the maximum activity was showed when the ultra sonic cleaning time was more than 3 minutes. The remanufactured catalysts by acid solution ultra sonic cleaning, the catalytic activity was recovered in the range of $81{\sim}97%$ of that of the fresh catalyst and the maximum catalytic activity was shooed when the pH of the acid solution was 5. The remanufactured catalysts by reimpregnation with $V_2O_5$ and $WO_3$, the catalytic activity was recovered in the range of $87{\sim}100%$ of that of the fresh catalyst. Maximum catalytic activity was showed when the $V_2O_5$ was reimpregnated more than 1.0 wt %. In this case, the catalytic activity was recovered 97% of that of the fresh catalyst especially at the $150^{\circ}C$ of the experimental temperature.

Status and Strategy on Recycling of Domestic Used Chemical Catalysts (국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향)

  • Kim, Young-Chun;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.3-16
    • /
    • 2017
  • Chemical catalyst products are applied to various fields such as petrochemical process, air pollution prevention facility and automobile exhaust gas purifier. The domestic and overseas chemical catalyst market is increasing every year, and the amount of waste catalyst generated thereby is also increasing. Most of the used chemical catalyst products, such as desulfurized waste catalysts and automobile waste catalysts containing valuable metals are important recyclable resources from a substitute resource point of view. The recycling processes for recovering valuable metals have been commercialized through some urban mining companies, and SCR denitration catalysts have been recycled through some remanufacturing companies. In this paper, the amount of domestic production and recycling of major catalyst products have thus been investigated and analyzed so as to be used as basic data for establishing industrial support policy for recycling of used chemical catalyst products. Also tasks for promoting the recycling of used chemical catalyst products are suggested.

Recovery of Palladium (Pd) from Spent Catalyst by Dry and Wet Method and Re-preparation of Pd/C Catalyst from Recovered Pd (폐촉매로부터 Pd회수 및 이를 이용한 Pd/C 촉매 재제조 기술 개발)

  • Kim, Ji Sun;Kwon, Ji Soo;Baek, Jae Ho;Lee, Man sig
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.376-381
    • /
    • 2018
  • The purpose of this study is to investigate and optimize an effectiveness process for the recovery of Pd from the spent Pd/C catalyst by the process of hydrogenation of maleic anhydride over Pd/C. Pd solution recovered from Pd/C catalyst was used to prepare Pd/C catalysts. Their characteristics were compared to those of Pd/C catalyst prepared by using a reagent grade precursor solution. Pd in the spent catalyst was leached by the modified process with dry and wet methods to obtain the high recovery ratio of Pd. The burn-out of carbon in the spent Pd/C catalyst was carried out in the rage of $600-900^{\circ}C$. Pd content of carbonized catalyst was confirmed by XRF and ICP. Pd was extracted from carbonized spent catalysts with acid solutions of 1,2 and 4 M HCl at a leaching temperature of $90^{\circ}C$ for 2 h. The high recovery ratio of Pd was shown as 92.4% that leached in 4 M HCl. Also Pd/C catalysts were prepared by using the leached solution and the reagent grade of $H_2PdCl_4$ as a precursor solution and the characteristics were analyzed by XRD, CO-chemisorption and FE-TEM. As a result, the dispersion of the catalyst prepared by using the leached solution was 34.6%, which was found to be equal to or more than that of the Pd/C catalyst prepared by the reagent grade precursor solution.

A Study on Remanufacturing of Deactivated Commercial Diesel Oxidation Catalyst by CVS-75 mode in Light Duty Diesel Engine (비활성화된 상용 디젤 산화 촉매의 소형 디젤 기관에서 CVS-75 모드를 이용한 재제조에 관한 연구)

  • Lee, Chang-Hee;Park, Hea-Kyung
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.517-525
    • /
    • 2011
  • In this study, the used DOCs, which could remove the air pollutants such as CO and HC in the exhaust gas from diesel vehicle, were remanufactured by various conditions. Their catalytic performances and characterization were also investigated. The remanufacturing process of the deactivated DOCs includes high temperature cleaning of incineration, ultrasonic cleaning for washing with acid/base solutions to remove deactivating materials deposited to the surface of the catalysts, and active component reimpregnation for reactivating catalytic activity of them. The catalytic performance tests of the remanufactured DOCs were carried out by the diesel engine dynamo systems and chassi dynamo systems in CVS-75 mode. All prepared catalysts were characterized by the optical microscopes, SEM, EDX, porosimeter and BET to investigate correlations between catalytic reactivity and surface characteristics of them. The remanufactured DOCs at various conditions showed the improved catalytic performances reaching to 90% of fresh DOC, which is attributed to remove the deactivating materials from the surface of the used DOC through the analysis of catalytic performance test and their characterization.