• Title/Summary/Keyword: 재적표

Search Result 43, Processing Time 0.019 seconds

Studies on the Species Crossabilities in the Genus Pinus and Principal Characteristics of F1 Hybrids (일대잡종송(一代雜種松)의 교배친화력(交配親和力)과 특성(特性)에 관(關)한 연구(硏究))

  • Ahn, Kun Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.16 no.1
    • /
    • pp.1-32
    • /
    • 1972
  • By means of the interspecific hybridization in the Sub-genus Diploxylon of the Genus Pinus, $F_1$ hybrids of Pinus rigida${\times}$elliottii, Pinus rigida${\times}$radiata, P. rigida${\times}$serotina and P. densiflora${\times}$thunbergii had been produced. And on the basis of the crossabilities of these hybrids the taxonomic affinities of these pines were examined. And the needle characteristics of these hybrid and the occurence of phenolic substances in these $F_1$ hybrid were also investigated to see the potential usefulness of these characteristics for the diagnosis of the taxonomic affinity. And, the growth performances of the $F_1$ hybrids have also been compared with those of parental species. In order to contribute to the establishment of the hybrid seed orchard the introgression phenomena between P. densiflora and P. thunbergii in the eastern coastal area have also been investigated along with the investigation of the heterozygosity of plus trees of P. densiflora growing in the clone bank in Suwon. And the results were summarized as follows. 1. On the basis of crossabilities as well as on the taxonomic affinities according to the systems of Shaw, Pilger and Duffield, it has been proven that the parental species of those hybrids are of close affinities and range of the fertile hybrid seed production rate was as high as 28-58% in the best hybrid combination (Table 13). 2. Among those hybrids, the ${\times}$ Pinus, rigiserotina hybrid seemed to be most promising in the growth performance exhibiting 109-155% more volume growth compared to the seed parent with the statistic significance of 1% level (Tables 16 and 17). 3. Notwithstanding the fact that the all of the pollen parents are cold tender, all hybrids exhibit cold hardiness as much as their seed parent and it seems to suggest that the characteristics of cold hardiness were transmitted from the seed parent. 4. Though a striking difference in needle length was observed between the parental species of each hybrid, it was difficult to distinguish each hybrid from their seed parent by the needle length except ${\times}$P. rigiserotina which is characterized by long needle which is 65% more longer than the needle of the seed parent (Table 21). 5. With regard to the anatomical characteristics of needle, the hypoderm is apparently thicker in most of the $F_1$ hybrid pines and the characteristics of resin canals are dominated by medial in most $F_1$ hybrid. And, the fibrovascular bundles were apart as were in their seed parent. Therefore it was found to be possible to distinguish the hybrids pines from their parents by the needle characteristics. And, it is to be noticed that the ${\times}$P. densithunbergii was more close to the pollen parent having RDI value of 0.73 (Fig.l, Table 22). 6. It has been demonstrated that ${\times}$P. rigielliottii, ${\times}$P. rigiradiata and ${\times}$P. rigitaeda have a phenolic substance (No.7) of light yellow at Rf-0.46, same as their seed parent, but no trace of phenolic substance was observed in their pollen parent. This fact will serve as an important criteria for early identification of hybridity in progeny testing. However, the fact that both of ${\times}$P. rigiserotina and ${\times}$P. densithunbergii exhibit the same reactions of phenolic substances as well their parental species seems to indicate the close affinities between the parental species of the respective hybrid (Fig.2, Table 23). 7. The separation and the reaction of phenolic substance developed on TLC were found to be same in the same species showing no variations between the individuals, and no variations due to tree part of sampling, tree age or pollen sources. And the reaction was also observed regardless of the not varied by the kind of developing solvent whether it is Aceton-Chloroform (3:7 v/v) or Benzene-Methanol-Acetic acid (90:16:8 v/v). 8. The introgression phenomena of natural Pinus densifiora stand in both east and west coastal area indicates that the major part of the red pines investigated are all heterozygous and the heterozygosity of pines are higher in the west coast than in the east coast(Tables 24 and 25). 9. Based on the RDI, among the plus trees of Pinus densiflora selected in Korea and Japan as well, no pure P. densiflora has been found. Since all of the sample trees of Pinus densiflora were found to be as heterozygous bearing part of the characteristics of P. thunbergii, those red pines were considered to be natural heterotic hybrid pines(Figs. 3 and 4. Tables 26 and 27).

  • PDF

Evaluation of Carbon Sequestration Capacity of a 57-year-old Korean Pine Plantation in Mt. Taeh wa based on Carbon Flux Measurement Using Eddy-covariance and Automated Soil Chamber System (에디 공분산 및 자동화 토양챔버 시스템을 이용한 탄소 플럭스 관측 기반 태화산 57년생 잣나무조림지의 탄소흡수능력 평가)

  • Lee, Hojin;Ju, Hyungjun;Jeon, Jihyeon;Lee, Minsu;Suh, Sang-Uk;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.554-568
    • /
    • 2021
  • Forests are the largest carbon (C) sinks in terrestrial ecosystems. Recently, as enhancing forest C sequestration capacity has been proposed as a basic direction of the Republic of Korea's "2050 Carbon Neutral Strategy," accurate estimation of forest C sequestration has been emphasized. According to the Intergovernmental Panel on Climate Change guidelines, sequestration quantity is calculated from changes in C stocks in forest C pools, such as biomass, deadwood, litter and soil layer, and harvested wood products. However, in Korea, only the overstory biomass increase is now considered the amount of sequestration quantity, so there can be a significant difference from the actual forest C sequestration. In this study, we quantified forest C exchange through C flux measurement using an eddy covariance system and an automated soil chamber system in a 57-year-old Korean pine plantation located in Mt. Taehwa, Gwangju-si, Gyeonggi-do. Then, the net amount of C sequestration was compared with the amount of the overstory biomass increase. We estimated the annual C stock change in the remaining C pools by comparing the net sequestration amount from the C flux measurement with the overstory biomass increase and C stock change in the litter layer. Therefore, the net C sequestration of the Korean pine plantation estimated from the flux measurement was 5.96 MgC ha-1, which was about 2.2 times greater than 2.77 MgC ha-1 of the overstory biomass increase. The annual C stock increase in the litter layer was estimated to be 0.75 MgC ha-1, resulting in a total annual C stock increase of 2.45 MgC ha-1 in the remaining C pools. Our results indicate that the domestic forest is a larger C sink than the current methods, implying that more accurate calculations of the C sequestration capacity are necessary to quantify C stock changes in C pools along with the C flux measurement.

A Study on the Forest Yield Regulation by Systems Analysis (시스템분석(分析)에 의(依)한 삼림수확조절(森林收穫調節)에 관(關)한 연구(硏究))

  • Cho, Eung-hyouk
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.344-390
    • /
    • 1977
  • The purpose of this paper was to schedule optimum cutting strategy which could maximize the total yield under certain restrictions on periodic timber removals and harvest areas from an industrial forest, based on a linear programming technique. Sensitivity of the regulation model to variations in restrictions has also been analyzed to get information on the changes of total yield in the planning period. The regulation procedure has been made on the experimental forest of the Agricultural College of Seoul National University. The forest is composed of 219 cutting units, and characterized by younger age group which is very common in Korea. The planning period is devided into 10 cutting periods of five years each, and cutting is permissible only on the stands of age groups 5-9. It is also assumed in the study that the subsequent forests are established immediately after cutting existing forests, non-stocked forest lands are planted in first cutting period, and established forests are fully stocked until next harvest. All feasible cutting regimes have been defined to each unit depending on their age groups. Total yield (Vi, k) of each regime expected in the planning period has been projected using stand yield tables and forest inventory data, and the regime which gives highest Vi, k has been selected as a optimum cutting regime. After calculating periodic yields and cutting areas, and total yield from the optimum regimes selected without any restrictions, the upper and lower limits of periodic yields(Vj-max, Vj-min) and those of periodic cutting areas (Aj-max, Aj-min) have been decided. The optimum regimes under such restrictions have been selected by linear programming. The results of the study may be summarized as follows:- 1. The fluctuations of periodic harvest yields and areas under cutting regimes selected without restrictions were very great, because of irregular composition of age classes and growing stocks of existing stands. About 68.8 percent of total yield is expected in period 10, while none of yield in periods 6 and 7. 2. After inspection of the above solution, restricted optimum cutting regimes were obtained under the restrictions of Amin=150 ha, Amax=400ha, $Vmin=5,000m^3$ and $Vmax=50,000m^3$, using LP regulation model. As a result, about $50,000m^3$ of stable harvest yield per period and a relatively balanced age group distribution is expected from period 5. In this case, the loss in total yield was about 29 percent of that of unrestricted regimes. 3. Thinning schedule could be easily treated by the model presented in the study, and the thinnings made it possible to select optimum regimes which might be effective for smoothing the wood flows, not to speak of increasing total yield in the planning period. 4. It was known that the stronger the restrictions becomes in the optimum solution the earlier the period comes in which balanced harvest yields and age group distribution can be formed. There was also a tendency in this particular case that the periodic yields were strongly affected by constraints, and the fluctuations of harvest areas depended upon the amount of periodic yields. 5. Because the total yield was decreased at the increasing rate with imposing stronger restrictions, the Joss would be very great where strict sustained yield and normal age group distribution are required in the earlier periods. 6. Total yield under the same restrictions in a period was increased by lowering the felling age and extending the range of cutting age groups. Therefore, it seemed to be advantageous for producing maximum timber yield to adopt wider range of cutting age groups with the lower limit at which the smallest utilization size of timber could be produced. 7. The LP regulation model presented in the study seemed to be useful in the Korean situation from the following point of view: (1) The model can provide forest managers with the solution of where, when, and how much to cut in order to best fulfill the owners objective. (2) Planning is visualized as a continuous process where new strateges are automatically evolved as changes in the forest environment are recognized. (3) The cost (measured as decrease in total yield) of imposing restrictions can be easily evaluated. (4) Thinning schedule can be treated without difficulty. (5) The model can be applied to irregular forests. (6) Traditional regulation methods can be rainforced by the model.

  • PDF