• Title/Summary/Keyword: 재실 인원 예측

Search Result 2, Processing Time 0.04 seconds

Prediction of Occupant Load Density using People Counting System in Discount Stores (무인계수시스템을 이용한 대형할인점의 재실자밀도 예측)

  • Seo, Dong-Goo;Hwang, Eun-Kyoung
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.53-59
    • /
    • 2017
  • The purpose of this study is to verify the suitability of the current standards by predicting the density of the occupant load density for discount stores. An internal data survey as well as an actual survey using a People Counting System (PCS) were employed to ascertain the number of occupants and 95% confidence interval of nationwide discount stores. According to the results of the actual survey, the time and days on which the maximum number of occupants were reached was from 16:00 to 18:00 and Christmas Eve and the weekend before New Year's Day, respectively. From the results of the maximum number of occupants, a regression equation was derived from the relationship between the internal data and the amount of sales, and this equation was verified in a previous study. Thus, the internal data of 50 discount stores were analyzed using this process. As a result, the 95% confidence interval was determined to be $2.7{\sim}2.9m^2/pers.$ and the error level was not large compared to the domestic and foreign standards. Therefore, this study proposes that a conservative estimate of the standard occupant load density for discount stores is $2.7m^2/pers.$

A Study on the Indoor Evacuation Using Matsim (활동기반 교통모형 MATSim을 이용한 실내 피난 분석)

  • Kim, Joo young;Lee, Seung jae;Ahn, Chi won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.18-31
    • /
    • 2018
  • It is important to conduct various analyzes to evacuate occupants in advance, because the disaster can cause serious injury. Therefore, it is necessary to analyze all the predictable scenarios that may occur. In this study, we propose a method to analyze the evacuation of indoor disaster using activity - based transport model MATSim. We have developed the university building as target area and simulated about 5,000 occupants. The analysis scenarios are set as basic evacuation conditions, exit closures and emergency stair closures. As a result of analysis of each scenario, the evacuation time was analyzed to be about 5:40(340s) in the base scenario, increased by 15% in the scenario 2 and increased by 23% in scenario 3. As a result of this study, we suggest that it is important to manage illegal obstacles of emergency stairs for rapid evacuation. Therefore, this study can contribute to the effective disaster prevention strategy of the building.