• Title/Summary/Keyword: 재생에너지 시스템

Search Result 1,390, Processing Time 0.028 seconds

A Study on Authentication Scheme for Device and Smartmeter in Smart Grid Environment (스마트그리드 환경에서 스마트미터와 디바이스간 안전한 인증기술 연구)

  • Jang, You-Jong;Go, Woong;Kwak, Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.786-789
    • /
    • 2011
  • 스마트그리드는 기존의 전력망에 디지털 시스템을 결합함으로써, 전력망의 안정성을 높이는 동시에 신재생 에너지의 활용 및 전력 사용량 분산 등과 같이 전력망의 효율성을 끌어올리는 기술이다. 이 같은 기술은 전력공급원과 각 가정에 연결되어 있는 스마트미터와의 실시간 통신을 통해 전력 데이터를 수집하여 이루어진다. 이렇게 수집된 전력데이터들은 기존의 정보통신기술을 사용하여 전송하고 있다. 이러한 이유로 스마트그리드 환경은 기존의 정보통신기술의 취약점뿐만 아니라 스마트그리드 환경에만 적용되는 보안위협이 예상된다. 따라서 본 논문에서는 이러한 보안위협 중 하나로 전력공급원과 실시간 통신을 하는 스마트미터와 각 가정의 디바이스들 간의 인증기술에 대하여 제안한다.

The Authentication Protocol for secure data transfer in AMI system (AMI 시스템에서 안전한 정보 전송을 위한 인증 프로토콜)

  • Jung, Su-Young;Go, Woong;Kwak, Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.794-796
    • /
    • 2011
  • 21세기에 들어오면서 기존 전력망의 한계를 극복하기 위해 IT기술을 접목시켜 신재생에너지 활용과 효율적이고 안정적인 전력공급을 할 수 있다. 또한 스마트미터를 이용해 사용 전력량, 요금 등을 관리할 수 있다. 하지만 IT기술과 접목되어서 기존의 폐쇄망과는 달리 개방적으로 바뀌면서 외부의 공격에 쉽게 노출되어있다. 따라서 본 논문에서는 스마트미터와 이를 통해 수집되어진 정보를 취합하는 AMI Headend사이의 안전한 정보 전송을 위해 프로토콜을 제안한다.

A Study on the Environmental Effects of Improvement of Activated Carbon Adsorption Tower for the Application of Activated Carbon Co-Regenerated System in Sihwa/Banwal Industrial Complex (시화반월산업단지 활성탄 공동재생시스템 적용을 위한 활성탄 흡착탑 개선에 따른 환경적 효과분석)

  • Choi, Ye Jin;Rhee, Young Woo;Chung, Gu Hoi;Kim, Duk Hyun;Park, Seung Joon
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.160-167
    • /
    • 2021
  • This study investigated the environmental effects of improving the general-type activated carbon adsorption tower used at the Sihwa/Banwol Industrial Complex with use of a cartridge-type activated carbon adsorption tower for the application of an activated carbon co-regenerated system. Four general-type activated carbon adsorption towers and two cartridge-type activated carbon adsorption towers were selected to analyze the properties of activated carbon and to compare the efficiency of reducing environmental pollutants. The results showed that the activated carbon used in the cartridge-type activated carbon adsorption towers was high quality activated carbon with an iodine adsorption force of more than 800 mg/g and that a good adsorption performance was maintained within the replacement cycle. From an analysis of the environmental pollutant reduction efficiency, it was confirmed that the cartridge-type activated carbon adsorption tower functioned properly as a prevention facility for handling emissions pollutants with a treatment efficiency of total hydrocarbons (THC), toluene, and methylethylketone (MEK) components of 71%, 77%, and 80%, respectively. The general activated carbon adsorption tower, which was confirmed to use low-performance activated carbon, had a very low treatment efficiency and did not function properly as a prevention facility for dealing with emission pollutants. It is believed that it is possible to reduce pollutants during operations by changing from the general-type activated carbon adsorption tower to a cartridge-type activated carbon adsorption tower.

Design of short-term forecasting model of distributed generation power for wind power (풍력 발전을 위한 분산형 전원전력의 단기예측 모델 설계)

  • Song, Jae-Ju;Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.211-218
    • /
    • 2014
  • Recently, wind energy is expanding to combination of computing to forecast of wind power generation as well as intelligent of wind powerturbine. Wind power is rise and fall depending on weather conditions and difficult to predict the output for efficient power production. Wind power is need to reliably linked technology in order to efficient power generation. In this paper, distributed power generation forecasts to enhance the predicted and actual power generation in order to minimize the difference between the power of distributed power short-term prediction model is designed. The proposed model for prediction of short-term combining the physical models and statistical models were produced in a physical model of the predicted value predicted by the lattice points within the branch prediction to extract the value of a physical model by applying the estimated value of a statistical model for estimating power generation final gas phase produces a predicted value. Also, the proposed model in real-time National Weather Service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

Properties of Low Carbon Type Hydraulic Cement Binder Using Waste Recycle Powder (무기계 재생원료를 사용한 저탄소형 수경성 시멘트 결합재의 특성)

  • Song, Hun;Shin, Hyeon-Uk;Tae, Sung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • Cement is a basic material for the construction industry and it requires high temperature sintering when manufacturing cement. $CO_2$ emissions from raw materials and fuels are recognized as new environmental problems and efforts are underway to reduce them. Techniques for reducing $CO_2$ in concrete are also recommended to use blended cement such as blast furnace slag or fly ash. In addition, the construction waste generated in the dismantling of concrete structures is recognized as another environmental problem. Thus, various methods are being implemented to increase the recycling rate. The purpose of this study is to utilize the inorganic raw materials generated during the dismantling of the structure as a raw material for the low carbon type cement binder. Such as, waste concrete powder, waste cement block, waste clay brick and waste textile as raw materials for low carbon type cement binder. From the research results, low carbon type cement binder was manufactured from the raw material composition of waste concrete powder, waste cement block, waste clay brick and waste textile.

Structural Behavior of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 구조거동)

  • Kim, Sung Bae;Kim, Hyun Young;Yi, Na Hyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.543-550
    • /
    • 2009
  • This study was performed to prove the possibility of utilizing short plastic fibers made for recycled polyethylene terephthalate (RPET) as a structural material. In order to verify the capacity of RPET fiber, it was compared with polypropylene (PP) fiber, most widely used short synthetic fiber, for fiber volume fraction of 0%, 0.5%, 0.75%, and 1.0%. To measure material properties such as compressive strength, split tensile strength, appropriate tests were performed. Also, to measure the strength and ductility capacities of reinforced concrete (RC) member casted with RPET fiber added concrete, flexural test was performed on RC beams. The results showed that compressive strength decreased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. Split cylinder tensile strength of RPET fiber reinforced concrete increased slightly as fiber volume fraction increased. For structural member performance, ultimate strength, relative ductility and energy absorption of RPET added RC beam are significantly larger than OPC specimen. Also, the results showed that ultimate flexural strength and ductility both increased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. The study results indicate that RPET fiber can be used as an effective additional reinforcing material in concrete members.

Development of intelligent fault diagnostic system for mechanical element of wind power generator (지능형 풍력발전 기계적 요소 고장진단 시스템 개발)

  • Moon, Dea-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • Recently, a rapid growth of wind power system as a leading renewable energy source has compelled a number of companies to develop intelligent monitoring and diagnostic system. Such systems can detect early mechanical faults, which prevents from costly repairs. Generally, fault diagnostic system for wind turbines is based on vibration and process signal analysis. In this work, different type of mechanical faults such as mass unbalance and shaft misalignment which can always happen in wind turbine system is considered. The proposed intelligent fault diagnostic algorithm utilizes artificial neural network and Wavelet transform. In order to verify the feasibility of the proposed algorithm, mechanical fault generation experimental system manufactured by Gaon corporation is utilized.

Design of CRIO-based real-time controller for small-sized wind turbine generating system and comparative study on performance of various MPPT algorithms (소형 풍력발전 시스템을 위한 CRIO 기반의 실시간 제어 시스템 설계 및 다양한 형태의 MPPT 알고리즘 성능 비교 분석)

  • Kim, Su-Jin;Kim, Byung-Moon;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • The small-sized wind turbine generating system with the output power less than 10kW, which can be installed in some areas of hills, parks, and cities due to its flexibility, is one of the progressive research and development fields in renewable energy. It is important for the small wind turbine generators to have low cost, high reliability as well as high efficiency. To meet these requirements, development of various maximum-power-point-tracking (MPPT) control schemes should be required. Generally, the output of the controller can be connected to a 48V battery to supply power to a DC load. In this work, the design and implementation of an FPGA-based MPPT controller for small-sized wind turbine generating system is presented. For the verification of the practical performance of various MPPT algorithms, CRIO controller from NI has been used.

Study on Artificial Neural Network Based Fault Detection Schemes for Wind Turbine System (풍력발전 시스템을 위한 인공 신경망 기반의 고장검출기법에 대한 연구)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.603-609
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance procedures. Condition Monitoring System(CMS) can be used to aid plant owners in achieving these goals. Its aim is to provide operators with information regarding the health of their machines, which in turn, can help them improve operational efficiency. In this work, systematic design procedure for artificial neural network based normal behavior model which can be applied for fault detection of various devices is proposed. Furthermore, to verify the design method SCADA(Supervisor Control and Data Acquisition) data from 850KW wind turbine system installed in Beaung port were utilized.

A Study on the Method of Applying Snow Thermal Storage System through the Analysis of Foreign Cases (해외 사례분석을 통한 '눈 이용 냉방시스템'의 도입 방안)

  • Aum, Tae-Yun;Hong, Min-Ho;Chun, Jae-Hong;Kweon, Dae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.514-519
    • /
    • 2009
  • The purpose of this study is to show the method of applying snow thermal storage system through the analysis of the cases in Japan. The results were as follows. (1) The systems in Japan were installed at the location whose annual mean air temperature was $14.6^{\circ}C$ or below and annual snowfall was 59 cm or above. (2) By analyzing the characteristics of the systems, meltwater circulation system with a backup chiller was confirmed to be most suitable for Korea. (3) For the first time in Korea, the system with the snow storage of 500 ton was designed at Muju after analyzing regional climate characteristics.

  • PDF