• Title/Summary/Keyword: 재사용발사체

Search Result 7, Processing Time 0.021 seconds

Simulation of Time-Delay Based Path-Tracking Control of Reusable Launch Vehicle (시간지연기법을 적용한 재사용발사체 유도제어 시뮬레이션)

  • Cho, Woosung;Lee, HyeongJin;Lee, Yeol;Ko, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.627-636
    • /
    • 2021
  • This paper deals with a study for the guidance control of reusable launch vehicle. For this purpose, modeling of the equation of motion of a reusable launch vehicle with 6 degrees of freedom was performed. With this model, an optimal re-entry path was created and a path-following guidance control simulation was performed to follow the optimal re-entry path. For the design of the path-following guidance controller, the attitude controller applying a time-delay technique that is resistant to modeling uncertainty, disturbance and failure. And the nonlinear path-following guidance law were used. Guidance control simulation using a classical PD controller was performed and compared with the guidance control simulation of a reusable launch vehicle applying a time delay technique.

Impacts of Payload Weights on the Cost Effectiveness of Reusable Launch Vehicles (재사용발사체의 비용 효용성에 미치는 임무중량의 영향)

  • Yang, Soo Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Recently, in the space market, there has been a rapid reduction of the launch price. The major reason is that a few commercial companies, especially SpaceX, began to enter into the space market about ten years ago, which has changed the space market from monopolization to competition, and accelerated the adoption of commercial efficiency in the technology and management. Also, the successful landing and recovery of a first stage in 2016 by SpaceX proved to be a prelude to opening a new era of reusable launch vehicles, and SpaceX declared the groundbreaking launch price through using the reusable launch vehicle. This study calculates the total launch cost required to put a certain satellite into the LEO, compares the launch cost in three cases with different payload weights, and reviews the impacts of the payload on the cost effectiveness of a reusable vehicle. The total launch cost is divided into 6 subsections cost, namely development cost, production cost, refurbishment cost, operation cost, fixed-cost of factory and launch site, and insurance cost. The cost estimation relationships used in the calculation are taken from the commonly proven cost models such as TRANSCOST.

Sensitivity Analysis of Major Cost Parameters on the Launch Cost of Reusable Vehicles (재사용발사체의 발사비용에 미치는 가격인자들의 민감도 분석)

  • Yang, Soo Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • Recently the reusable launch vehicle is being a major trend in the worldwide space market, because a few commercial companies, especially SpaceX, are trying to cut down the launch price through developing and succeeding the reusable launch vehicles. However, there is still a big controversy about whether in view point of the launch cost which is more favorable between expendable and reusable. Therefore, a study and close examination is required for the launch cost in the early development phase of the reusable launch vehicle. In this study the sensitivity analysis is performed with respect to the major cost parameters which have great effects on the launch cost and price. The standard vehicle of this sensitivity analysis is the expendable vehicle having a payload 20 tons. The cost estimation relationships used in this calculation are referred from the commonly proven cost models such as TRANSCOST. The major cost parameters chosen in this study are as follows: development cost, production cost, refurbishment cost, and maximum reusable number.

Weight Reduction of the Reusable Launch Vehicles Using RBCC Engines (RBCC엔진을 적용한 재사용발사체의 중량저감효과)

  • Kang, Sang Hun;Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.56-66
    • /
    • 2013
  • Weight reduction of the VTHL / TSTO type of the reusable launch vehicles using RBCC engines are investigated. To predict weight and thrust of the vehicles, equations of motion are analyzed. Analysis results are compared with specifications of existing launch vehicles for validations. For the mission of inserting 2.5 ton payload to 200 km circular orbit, the case A, which uses the RBCC engine in the 1st stage shows smaller weight than the case B, which uses the RBCC engine in the 2nd stage. The weight of the case A shows only 25.8% of a existing rocket launch vehicle's weight.

Development of the KSLV-I KM Case Manufacturing Process (KSLV-I KM 연소관 제작 공정 개발)

  • Kim, Joong-Suk;Lee, Won-Bok;Cho, In-Hyun;Kil, Gyoung-Sub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.193-196
    • /
    • 2007
  • The motor case for the KSLV-I KM is the first satellite launch vehicle ever to be developed by Korea to deliver the 100 kg class satellite into Earth's low orbit. This SLV is made of two stages, and the 2nd stage is made of solid rocket motor. The motor case of the KM is made of all composite materials except for the interface structures. Manufacturing process for the motor case such as insulation, filament winding for the motor case, fabrications for the interface structures will be discussed in this paper.

  • PDF

Development Trends of Liquid Methane Rocket Engine and Implications (액체로켓 메탄엔진 개발동향 및 시사점)

  • Lim, Byoungjik;Kim, Cheulwoong;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung;Ahn, Kyubok;Namkoung, Hyuck-Joon;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.119-143
    • /
    • 2021
  • Selecting liquid methane as fuel is a prevailing trend for recent rocket engine developments around the world, triggered by its affordability, reusability, storability for deep space exploration, and prospect for in-situ resource utilization. Given years of time required for acquiring a new rocket engine, a national-level R&D program to develop a methane engine is highly desirable at the earliest opportunity in order to catch up with this worldwide trend towards reusing launch vehicles for competitiveness and mission flexibility. In light of the monumental cost associated with development, fabrication, and testing of a booster stage engine, it is strategically a prudent choice to start with a low-thrust engine and build up space application cases.

Development of Liquid Propellant Rocket Engine for KSR-III (KSR-III 액체추진제 로켓 엔진 개발)

  • Choi Hwan-Seok;Seol Woo-Seok;Lee Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.75-86
    • /
    • 2004
  • KSR-III is the first Korean sounding rocket propelled by a liquid propellant propulsion system and it has been developed over 5 years using purely domestic technologies. The propulsion system of KSR-III is a 13-ton class see-level thrust liquid rocket engine(LRE) which utilizes liquid oxygen and kerosene for its propellants and employed pressurized propellant feeding and ablative cooling system. The problem of combustion instabilities which has brought the most difficulty in the development was resolved by implementation of a baffle. Through the development of KSR-III LRE, meaningful achievements have been made in the core technologies of LRE such as design of injectors and combustion chambers and test, evaluation, and control of combustion instabilities. The acquired technologies will be applied to the development of higher performance LREs necessary for future space development programs such as Korean Small Launch Vehicles(KSLV) In this paper, the development of KRE-III LRE system is described including its design, analyses. performance tests and evaluation.