• Title/Summary/Keyword: 재가열 공정

Search Result 24, Processing Time 0.019 seconds

Reheating Process of Semi-Solid Aluminum Alloy (반융용알루미늄재료의 재가열공정)

  • 강성수;도영진;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.16-27
    • /
    • 1997
  • A semi-solid forming has a lot of advantages compared to the die casting, squeeze costing and convenctional forging, therefore, semi-solid forming process are now becoming of industial interest for the production of metal components and metal matrix composites. However, the material behaviour in the semi-solid temperature range is not sufficiently known although it controls the whole process through forces and geometry evolutions bcause the behaviour of metal slurries is complex. The semi-solid materials(SSM) fabricated under electric-magnetic stirring condition is necessary to be applicate in forming process. A reheating conditions were studied with the reheating time, holing time and reheating temperatures. The microstructure of SSM (which specimen size:d 40${\times}$i60) on condition of heating time 10min and heating temperature 590$^{\circ}C$ is most globular and finest one. The microstructure of SSM(specimen size:d75${\times}$i60) reheated under the three step reheating conditions is most globular and finest.

  • PDF

Investigation of Reinforced Distribution in Fabrication Process of Metal Matrix Composites by Combined Stirring Process (복합교반법에 의한 금속복합재료의 제조공정에 따른 강화재의 분산성 검토)

  • 이동건;강충길
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.1-11
    • /
    • 2001
  • The particulates reinforced metal matrix composites(PMMC) have a number of interesting mechanical properties. including high strength and good resistance to wear at high temperature and low thermal expansion. The equipment structure to obtain the homogeneous distribution in composites are proposed for the continuous pouring of reinforcement at the desired temperature. The particulates reinforced metal matrix composites(A357/SiCp) were fabricated by the process of the combined stirring method with the various fabrication process. The combined stirring method to niform distribution of particle is consisted of two stirring force both electro-magnetic stirring generated from induction heating and mechanical stirring with graphite stirrer. PMMC billets were fabricated with the volume fractions ranged from 0% to 20% and particle sizes ranged from 14${\mu}{\textrm}{m}$ to 25${\mu}{\textrm}{m}$. It is important to cont the size of primary $\alpha$-Al solid particles because it could become the cause of the particle pushing or capture phenomena from the fact that secondary dendrite arm spacing size depends on the cooling rate during the solidification in hypoeutectic Al-Si alloy. Therefore, the effect of primary $\alpha$-Al on the reinforcement distribution in matrix alloys has been investigated. The microstructure of PMMC fabracated with various volume fractions(0%, 10%, and 20%) and particle size were observed.

  • PDF

Reheating Process of Metal Matrix Composites Fabricated by Combined Stirring Process for Thixoforming (복합교반법으로 제조한 금속복합재료의 Thixoforming용 재가열공정)

  • 이동건;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The forming process of metal matrix composites by die casting and squeeze casting process are limited in size and dimension In term of final parts. The melt strirring method have the problems that the homogeneous distribution of the reinforcements is difficult due to the low weldability and the density difference between the molten metal and the reinforcement. The thixoforming process for metal matrix composites has numerous advantages compacted to die casting, squeeze casting and compocasting. However, for the thixofoming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process. The matrix alloy and reinforcement are used to aluminum alloy(A357) and SiCp with diameter 14, $25{\mu}m$, respectively. The microstructure characteristics were investigated by changing the volume fraction and reinforcement size. The heating conditions to obtain the uniform temperature distribution in cross section area of fabricated metal matrix composites billet are proposed with heating time, the heating temperature and the holding time.

Application of Open-source OpenFOAM for Simulating Combustion and Heating Performance in Horizontal CGL Furnace (수평형 CGL 소둔로의 연소 및 가열 성능 해석을 위한 오픈소스 OpenFOAM 기반 전산유체 해석)

  • Kim, GunHong;Oh, Kyung-Teak;Kang, Deok-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.553-561
    • /
    • 2017
  • The main motivation for this study was to establish a CFD-based procedure for the analysis of heating characteristics, particularly in industrial furnaces. As certain open-source software packages have gained popularity in dealing with complex industrial problems, the OpenFOAM framework was selected for further development of advanced physical models to meet industrial requirements. In this study, the newly developed comprehensive model was applied to simulate physical processes in the full-scale horizontal furnace of a continuous galvanizing line (CGL). The numerical results obtained indicate that the current approach predicts heating characteristics reasonably well. It was also found that radiative heat transfer plays a dominant role in heating the moving strip. To improve the predictability of our method, further work is required to model the turbulence-chemistry interaction realistically, as well as to impose a physically correct thermal wall boundary condition.