• Title/Summary/Keyword: 장하분배법

Search Result 7, Processing Time 0.038 seconds

A Study for Fundamental Design of Power Transformer Using Finite Element Method (유한요소법을 이용한 전력용 변압기 기초 설계 연구)

  • Lee, Ji-Yeon;Kim, Joong-Kyoung;Jung, Sang-Yong;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.846-847
    • /
    • 2008
  • 본 논문에서는 유한요소법을 이용한 전력용 변압기의 기초 설계에 대하여 다루고자 한다. 전력용 변압기 설계 및 해석을 위해 원하는 사양의 전력용 변압기 치수결정이 선행되어야 한다. 본 논문에서는 전력용 변압기의 치수결정을 위해 장하분배법을 기반으로 하는 기초 설계 프로그램를 제작하였다. 설계 프로그램을 이용해 결정한 치수에 의해 전력용 변압기를 모델링 하였고, 유한요소법을 이용하여 자계해석을 하였다. 유한요소해석에 의한 각 사양별 전력용 변압기의 자기적 특성값과 장하분배법에 의한 기초 설계 계산값을 비교.검토하였다.

  • PDF

Development of a Non-contact Electric Power Transferring System by Using an Inductive Coupling Method (자기 유도방식을 이용한 550 VA 급 비접촉 전력전송기기의 개발)

  • Kim, Jin-Sung;Lee, Yu-Ki;Kim, Se-Ryong;Lee, Jae-Gil;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.97-102
    • /
    • 2012
  • In this paper, a non-contact power transferring has been performed. Power Transferring by using an electromagnetic inductive coupling is more suitable for high power transmission than by using a magnetic resonance method. Power transferring system has been designed with Loading Distribution Method to divide the electric and magnetic loading for designing the magnetic core and electric coil. To design optimum shapes of magnetic yoke, 3D finite element analysis has been performed. Experimental results show good agreement with numerical ones. So, it could be adopted in the electric power transferring system for a short-distance wireless electric power transferring machine.

Design and Characteristic Analysis of an 200[kW], 30000[rpm] Induction Motor for Gearless Turbo Machine (Gearless 터보기기용 200[kW], 30000[rpm] 유도전동기 설계 및 특성 해석)

  • Jo, Won-Young;Woo, Kyung-Il;Cho, Yun-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.420-427
    • /
    • 2006
  • This paper describes design and characteristic analysis of the 200[kW], 3000[rpm] induction motor for gearless turbo machine. It was designed by the loading distribution method and the results of characteristics obtained by the equivalent circuit method are compared with the results of circle diagram. To verify the validation of design 2D finite element method is used and also 3D finite element method is used to calculate the current density curve of the rotor bars when they are broken.

Design of three-phase induction motor using Loading distribution method (장하분배법을 이용한 3상유도전동기의 설계)

  • Han, Sang-Jin;Lee, Seung-Chul;Lee, Hyun-Jun;Kim, Se-Won;Kim, Jin-Bum;Lee, You-Sung;Kim, Kyung-Hoon;Beak, Seung-Hun;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2237_2238
    • /
    • 2009
  • This paper describes the design process of three-phase squirrel cage induction moter. stator and rotor were modelled with the result obtained from loading distribution on the provided specification. For proving validity of the result obtained from loading distribution, through Maxwell simulator the first test target values, output and efficency, synchronous speed and etc, were compared with the design result.

  • PDF

Design of single-phase synchronous generator using Loading distribution method (장하분배법을 이용한 동기발전기의 설계)

  • Choi, Yun-Young;Sung, Ki-Young;Hwang, Su-Jin;Lee, Kue-Chul;Kim, Min-Kyu;Kwon, Seoung-Hyun;Park, Jong-Jin;Lee, Jung-Min;Ahn, Chang-Ho;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2239_2240
    • /
    • 2009
  • This paper describes the design process of three-phase Synchronous generator. stator and rotor were modelled with the result obtained from loading distribution on the provided specification. For proving validity of the result obtained from loading distribution, through Maxwell simulator the first test target values, output and efficiency, Rated speed and etc, were compared with the design result.

  • PDF

Design of an Electromagnetic Pump and Numerical Analysis of the Liquid Metal Flow (전자기펌프의 설계 및 액체금속 유동의 수치해석)

  • Kwon, Jeong-Tae;Kim, Seo-Hyun;Nahm, Taek-Hoon;Lim, Hyo-Jae;Kim, Chang-Eob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2589-2595
    • /
    • 2009
  • An electromagnetic pump has been designed using Load Distribution Method and Equivalent Circuit Method, and installed in a liquid metal flow system. The relation between the driving power of he electromagnetic pump and the flow rate was proposed. Also, the flow velocity and flow rate has been calculated by treating the Lorentz force as a source term in the Navier-Stokes equation. The calculation results were analyzed and compared with data from a commercial Code, FLUENT. They agreed well with each other within an error of 5%.

Design of the 1.5kVA Class Wireless Power Transfer Device for Battery Charging of Integrated Power Control System in MSAP (군 이동기지국시스템(MSAP) 통합전원제어장치 배터리 충전용 1.5kVA급 무선전력전송기기의 설계)

  • Kim, Jin-Sung;Kim, Byung-Jun;Park, Hyeon-Jeong;Seo, Min-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.413-420
    • /
    • 2020
  • The Tactical Information and Communication Network system provides real-time multimedia services such as voice and data by utilizing the Mobile Subscriber Access Point. At this time, an external transmission path is constructed through the Low Capacity Trunk Radio and the High Capacity Trunk Radio system. The communication devices of each wireless transmission system are mounted on a tactical vehicle and a secondary battery is used to prevent a power interruption when the supply power to the tactical vehicle is transferred to the integrated power control device. In this paper, the basic design of the Wireless Power Transfer device for charging the battery of the integrated power control system of the mobile base station system using the Loading Distribution Method and checking the number of primary windings and the core material selection by the air gap through the Finite Elements Method.