• Title/Summary/Keyword: 장치 및 미디어

Search Result 503, Processing Time 0.019 seconds

The Development of 1G-PON Reach Extender based on Wavelength Division Multiplexing for Reduction of Optical Core (국사 광역화와 광코어 절감을 위한 파장분할다중 기반의 1기가급 수동 광가입자망 Reach Extender 효율 극대화 기술 개발)

  • Lee, Kyu-Man;Kwon, Taek-Won
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.229-235
    • /
    • 2019
  • As the demand for broadband multimedia including the Internet explosively increases, the advancement of the subscriber network is becoming the biggest issue in the telecommunication industry due to the surge of data traffic caused by the emergence of new services such as smart phone, IPTV, VoIP, VOD and cloud services. In this paper, we have developed WDM(Wavelength Division Multiplexing)-PON(passive optical network) based on the 1-Gigabit Reach Externder (RE) technique to reduce optical core. Particularly, in order to strengthen the market competitiveness, we considered low cost, miniaturization, integration technique, and low power of optical parts. In addition, we have developed a batch system by integrating all techniques for reliability, remote management through the development of transmission distance extension and development of capacity increase of optical line by using RE technology in existing PON network. Based on system interworking with existing commercial 1G PON devices, it can be worthy of achievement of wide nationalization and optical core reduction by using this developed system. Based on these results, we are studying development of 10G PON technology.

Lightweight Super-Resolution Network Based on Deep Learning using Information Distillation and Recursive Methods (정보 증류 및 재귀적인 방식을 이용한 심층 학습법 기반 경량화된 초해상도 네트워크)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.378-390
    • /
    • 2022
  • With the recent development of deep composite multiplication neural network learning, deep learning techniques applied to single-image super-resolution have shown good results, and the strong expression ability of deep networks has enabled complex nonlinear mapping between low-resolution and high-resolution images. However, there are limitations in applying it to real-time or low-power devices with increasing parameters and computational amounts due to excessive use of composite multiplication neural networks. This paper uses blocks that extract hierarchical characteristics little by little using information distillation and suggests the Recursive Distillation Super Resolution Network (RDSRN), a lightweight network that improves performance by making more accurate high frequency components through high frequency residual purification blocks. It was confirmed that the proposed network restores images of similar quality compared to RDN, restores images 3.5 times faster with about 32 times fewer parameters and about 10 times less computation, and produces 0.16 dB better performance with about 2.2 times less parameters and 1.8 times faster processing time than the existing lightweight network CARN.

A Collaborative Video Annotation and Browsing System using Linked Data (링크드 데이터를 이용한 협업적 비디오 어노테이션 및 브라우징 시스템)

  • Lee, Yeon-Ho;Oh, Kyeong-Jin;Sean, Vi-Sal;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.203-219
    • /
    • 2011
  • Previously common users just want to watch the video contents without any specific requirements or purposes. However, in today's life while watching video user attempts to know and discover more about things that appear on the video. Therefore, the requirements for finding multimedia or browsing information of objects that users want, are spreading with the increasing use of multimedia such as videos which are not only available on the internet-capable devices such as computers but also on smart TV and smart phone. In order to meet the users. requirements, labor-intensive annotation of objects in video contents is inevitable. For this reason, many researchers have actively studied about methods of annotating the object that appear on the video. In keyword-based annotation related information of the object that appeared on the video content is immediately added and annotation data including all related information about the object must be individually managed. Users will have to directly input all related information to the object. Consequently, when a user browses for information that related to the object, user can only find and get limited resources that solely exists in annotated data. Also, in order to place annotation for objects user's huge workload is required. To cope with reducing user's workload and to minimize the work involved in annotation, in existing object-based annotation automatic annotation is being attempted using computer vision techniques like object detection, recognition and tracking. By using such computer vision techniques a wide variety of objects that appears on the video content must be all detected and recognized. But until now it is still a problem facing some difficulties which have to deal with automated annotation. To overcome these difficulties, we propose a system which consists of two modules. The first module is the annotation module that enables many annotators to collaboratively annotate the objects in the video content in order to access the semantic data using Linked Data. Annotation data managed by annotation server is represented using ontology so that the information can easily be shared and extended. Since annotation data does not include all the relevant information of the object, existing objects in Linked Data and objects that appear in the video content simply connect with each other to get all the related information of the object. In other words, annotation data which contains only URI and metadata like position, time and size are stored on the annotation sever. So when user needs other related information about the object, all of that information is retrieved from Linked Data through its relevant URI. The second module enables viewers to browse interesting information about the object using annotation data which is collaboratively generated by many users while watching video. With this system, through simple user interaction the query is automatically generated and all the related information is retrieved from Linked Data and finally all the additional information of the object is offered to the user. With this study, in the future of Semantic Web environment our proposed system is expected to establish a better video content service environment by offering users relevant information about the objects that appear on the screen of any internet-capable devices such as PC, smart TV or smart phone.