• Title/Summary/Keyword: 장구형 피로시편

Search Result 2, Processing Time 0.016 seconds

Prediction of Fatigue Life of 3D Jang-gu Rubber Specimens (3차원 장구형 고무시편의 피로수명예측)

  • Han, S.W.;Kim, J.Y.;Kim, W.D.;Kim, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.710-715
    • /
    • 2001
  • Rubber is used extensively in many industries because of its large reversible elastic deformation, excellent damping and energy absorption characteristics, and wide availability. It becomes very important to predict the fatigue life of rubber components. But a great deal of time and cost are necessary for the fatigue test of rubber components. In this study the fatigue life of rubber components is evaluated by performing the fatigue test of a specimen and FE analysis. The fatigue life of Jang-gu type specimen which is considered as a simple rubber component is predicted and compared with experimental results. Its material is natural rubber of which hardness is 60 and used for the engine mount of commercial vehicles.

  • PDF

Fatigue Life Prediction for Automotive Vibroisolating Rubber Component Using Tearing Energy (찢김에너지를 이용한 자동차용 방진 부품의 내구수명 예측)

  • Moon, Hyung-Il;Kim, Ho;Woo, Chang-Soo;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.100-106
    • /
    • 2012
  • Recently, the demand to acquire and improve durability performance has steadily risen in rubber components design. In design process of a rubber component, an analytical prediction is the most effective way to improve fatigue life. Existing methods of analytical estimation have mainly used an equation for fatigue life obtained from fatigue test data. However, such formula is rarely used due to costs and time required for fatigue testing, as well as randomness of rubber materials. In this paper, we describe fatigue life estimation of rubber component using only the results from a relatively simple tearing test. We estimated fatigue life of the Janggu type fatigue specimen and the automotive motor mount, and evaluated reliability of the proposed method by comparing the estimated values with actual test results.