• Title/Summary/Keyword: 잡음 검출

Search Result 1,343, Processing Time 0.019 seconds

Imaging Characteristics of Computed Radiography Systems (CR 시스템의 종류와 I.P 크기에 따른 정량적 영상특성평가)

  • Jung, Ji-Young;Park, Hye-Suk;Cho, Hyo-Min;Lee, Chang-Lae;Nam, So-Ra;Lee, Young-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • With recent advancement of the medical imaging systems and picture archiving and communication system (PACS), installation of digital radiography has been accelerated over past few years. Moreover, Computed Radiography (CR) which was well established for the foundation of digital x-ray imaging systems at low cost was widely used for clinical applications. This study analyzes imaging characteristics for two systems with different pixel sizes through the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE). In addition, influence of radiation dose to the imaging characteristics was also measured by quantitative assessment. A standard beam quality RQA5 based on an international electro-technical commission (IEC) standard was used to perform the x-ray imaging studies. For the results, the spatial resolution based on MTF at 10% for Agfa CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.9 cycles/mm and 2.8 cycles/mm, respectively. The spatial resolution based on MTF at 10% for Fuji CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.4 cycles/mm and 3.2 cycles/mm, respectively. There was difference in the spatial resolution for $14{\times}17$ inches, although radiation dose does not effect to the MTF. The NPS of the Agfa CR system shows similar results for different pixel size between $100{\mu}m$ for $8{\times}10$ inch I.P and $150{\mu}m$ for $14{\times}17$ inch I.P. For both systems, the results show better NPS for increased radiation dose due to increasing number of photons. DQE of the Agfa CR system for $8{\times}10$ inch I.P and $14{\times}17$ inch I.P resulted in 11% and 8.8% at 1.5 cycles/mm, respectively. Both systems show that the higher level of radiation dose would lead to the worse DQE efficiency. Measuring DQE for multiple factors of imaging characteristics plays very important role in determining efficiency of equipment and reducing radiation dose for the patients. In conclusion, the results of this study could be used as a baseline to optimize imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE for different level of radiation dose.

  • PDF

The Effects of Image Quality due to Scattering X-ray according to increasing Patient Thickness (피사체 두께에 따른 산란선 발생이 화질에 미치는 영향)

  • Park, Ji-Koon;Yang, Sung-Woo;Jun, Jae-Hoon;Cho, Su-Yeon;Kim, Kyo-Tae;Heo, Ye-Ji;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.671-677
    • /
    • 2017
  • In this study, scattering factors affecting the quality of medical images were quantitatively analyzed and investigated. MCNPX simulation was conducted by using ANSI phantom, made of tissue equivalent materials, to calculate the scattering ratio occurred by the increase of the object thickness. Then, the result of the simulation was compared with the result of actual radiation measurement. In addition, we evaluated the image quality by the RMS evaluation, RSD and NPS analysis using X-ray images acquired with increasing object thickness. Furthermore, the scattering ratio was analyzed by increasing the thickness of acrylic phantom on chest phantom. The result showed that the scattering ratio was increased to 57.2%, 62.4%, and 66.8% from 48.9%, respectively, when the acrylic phantom thickness was increased by 1 inch from 6.1 inches. The results of MCNPX simulation and the actual measured scattering dose showed similar results. Also, as a result of RMS measurement from acquired x-ray images, the standard deviation decreased as the object thickness increased. However, in the RSD analysis considering the average incident dose, the results were increased from 0.028 to 0.039, 0.051, 0.062 as the acrylic phantom thickness was increased from 6.1 inches to 7.1 inch, 8.1 inch, and 9.1 inch, respectively. It can be seen that the increase of the scattering effect due to the increase of the object thickness reduces the SNR. Also, the NPS results obtained by measuring scattered radiation incident on the detector resulted in the increase of the noise as the object thickness increased.

A Study of Changes of Inversion Time Effect on Brain Volume of Normal Volunteers (반전 시간의 변화가 정상인의 뇌 체적에 미치는 영향에 대한 고찰)

  • Kim, Ju Ho;Kim, Seong-Hu;Shin, Hwa Seon;Kim, Ji-Eun;Na, Jae Boem;Park, Kisoo;Choi, Dae Seob
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.286-293
    • /
    • 2013
  • Purpose : The objective of this study was to analyze the brain volume according to the brain image of healthy adults in the 20s taken with different inversion time (TI). Materials and Methods: Brain images of healthy adults in the 20 s were acquired using magnetization prepared rapid acquisition gradient echo (MPRAGE) pulse sequence with 1.5 mm thickness of pieces and four inversion times (1100 ms, 1000 ms, 900 ms, 800 ms). The acquired brain images were analyzed to measure the volume of white matter (WM), gray matter (GM), intracranial volume (ICV). The statistical difference according to brain volume and gender was analyzed for each TI. Results: The brain volume calculated using Freesurfer was WM$486.52{\pm}48.64cm^3$ and GM=$646.83{\pm}57.12cm^3$ in mean when adjusted by mean ICV=$1278.94{\pm}154.92cm^3$. Men's brain volume(WM, GM, ICV) was larger than women's brain volume. In the intrarater reliability test, all of the intraclass correlation coefficients were high (0.992 for WM, 0.988 for GM, and 0.997 for ICV). In the repeated measures analysis of variance, GM and ICV did not show a significant difference at each TI (GM p=0.143, ICV p=0.052), but WM showed a significant (p=0.001). In the linear structure relation analysis, all of the Pearson correlation coefficients were high. Conclusion: WM, GM, and ICV indicated high reliability and solid linear structure relations, but WM showed significant differences at each TI. The brain volume of healthy adults in the 20s could be used in comparison with that of patients for reference purposes and to predict the structural change of brain. It would be needed to conduct additional studies to examine the contract, SNR, and lesion detection ability according to variable TI.