• Title/Summary/Keyword: 잠재적 수요

Search Result 3,422, Processing Time 0.027 seconds

Development of a Distribution Prediction Model by Evaluating Environmental Suitability of the Aconitum austrokoreense Koidz. Habitat (세뿔투구꽃의 서식지 환경 적합성 평가를 통한 분포 예측 모형 개발)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.504-515
    • /
    • 2021
  • To examine the relationship between environmental factors influencing the habitat of Aconitum austrokoreense Koidz., this study employed the MexEnt model to evaluate 21 environmental factors. Fourteen environmental factors having an AUC of at least 0.6 were found to be the age of stand, growing stock, altitude, topography, topographic wetness index, solar radiation, soil texture, mean temperature in January, mean temperature in April, mean annual temperature, mean rainfall in January, mean rainfall in August, and mean annual rainfall. Based on the response curves of the 14 descriptive factors, Aconitum austrokoreense Koidz. on the Baekun Mountain were deemed more suitable for sites at an altitude of 600 m or lower, and habitats were not significantly affected by the inclination angle. The preferred conditions were high stand density, sites close to valleys, and distribution in the northwestern direction. Under the five-age class system, the species were more likely to be observed for lower classes. The preferred solar radiation in this study was 1.2 MJ/m2. The species were less likely to be observed when the topographic wetness index fell below the reference value of 4.5, and were more likely observed above 7.5 (reference of threshold). Soil analysis showed that Aconitum austrokoreense Koidz. was more likely to thrive in sandy loam than clay. Suitable conditions were a mean January temperature of - 4.4℃ to -2.5℃, mean April temperature of 8.8℃-10.0℃, and mean annual temperature of 9.6℃-11.0℃. Aconitum austrokoreense Koidz. was first observed in sites with a mean annual rainfall of 1,670- 1,720 mm, and a mean August rainfall of at least 350 mm. Therefore, sites with increasing rainfall of up to 390 mm were preferred. The area of potential habitats having distributive significance of 75% or higher was 202 ha, or 1.8% of the area covered in this study.

Product Evaluation Criteria Extraction through Online Review Analysis: Using LDA and k-Nearest Neighbor Approach (온라인 리뷰 분석을 통한 상품 평가 기준 추출: LDA 및 k-최근접 이웃 접근법을 활용하여)

  • Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.97-117
    • /
    • 2020
  • Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.