• Title/Summary/Keyword: 잠재자연식생

Search Result 64, Processing Time 0.031 seconds

Community Distribution on Mountain Forest Vegetation of the Youngbong Area in the Worak National Park, Korea (월악산국립공원 영봉 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jang, In-Soo;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.51-60
    • /
    • 2015
  • Forest vegetation of Youngbong (1,094 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 84 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 91 communities were researched; mountain forest vegetation classified by physiognomy classification are 39 communities deciduous broad-leaved forest, 26 communities of mountain valley forest, 6 communities of coniferous forests, 2 communities of riparian forests, 11 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus variabilis communities account for 40.879 percent of deciduous broad leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 25.627 percent of mountain valley forest, Pinus densiflora community holds 75.618 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Quercus variabilis, Fraxinus mandshurica, and Quercus serrata are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Quercus variabilis and Fraxinus mandshurica which are climax species in the area.

Community Distribution on Mountain Forest Vegetation of the Hwangjangsan Area in the Worak National Park, Korea (월악산국립공원 황장산 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jung, Se-Hoon;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.203-211
    • /
    • 2015
  • Forest vegetation of Hwangjangsan (1,077.3 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 55 communities of mountain forest vegetation and 4 communities of other vegetation, the total of 59 communities were researched; mountain forest vegetation classified by physiognomy classification are 28 communities deciduous broad-leaved forest, 12 communities of mountain valley forest, 3 communities of coniferous forests, 2 communities of riparian forest, 10 afforestation and 4 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica and Quercus variabilis communities account for 65.928 percent of deciduous broad leaved forest, Fraxinus rhynchophylla - Quercus mongolica community takes up 41.459 percent of mountain valley forest, Pinus densiflora community holds 86.100 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Quercus variabilis, Fraxinus rhynchophylla, and Quercus serrata are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Quercus variabilis, and Fraxinus rhynchophylla which are climax species in the area.

Community Distribution on Mountain Forest Vegetation of the Geumsusan and Doraksan Area in the Worak National Park, Korea (월악산국립공원 금수산 및 도락산 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jung, Se-Hoon;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.129-138
    • /
    • 2015
  • Forest vegetation of Geumsusan (1,016.0 m) and Doraksan (964.4 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 77 communities of mountain forest vegetation and 5 communities of other vegetation, the total of 82 communities were researched; mountain forest vegetation classified by physiognomy classification are 37 communities deciduous broad-leaved forest, 16 communities of mountain valley forest, 8 communities of coniferous forests, 1 community of riparian forest, 15 afforestation and 5 other vegetation. As for the distribution rate for surveyed main communities, Quercus variabilis and Quercus mongolica communities account for 33.031 percent of deciduous broadleaved forest, Cornus controversa community takes up 29.142 percent of mountain valley forest, Pinus densiflora community holds 64.477 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus variabilis, Quercus mongolica, Pinus densiflora, Quercus serrata and Cornus controversa are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus variabilis, Quercus mongolica, Cornus controversa and Fraxinus mandshurica which are climax species in the area.

Synecological Study of the Forest Vegetation on Mt. Boryeonsan, Chungcheongbuk Province (충청북도 보련산 삼림식생에 대한 군락생태학적 연구)

  • Song, Jong-Suk;Sin, Dong-Guk;Lee, Jang-Soon;Kim, Heon-Kyu;Eom, Goang-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.1
    • /
    • pp.66-77
    • /
    • 2009
  • This study aims at classifying and interpreting on the forest vegetation located in the whole area of Mt. Boryeonsan in Noeunmyeon, Chungju city, Chungcheongbuk Province, Korea using the methodology of the ZM school of phytosociology. The forest vegetation was classified into one Larix leptolepis afforestation, five secondary communities including Qurecus acutissima community, Pinus densiflora community, Quercus aliena community, Quercus serrata community, Quercus variabilis community and one association, Ainsliaeo-Quercetum mongolicae Song et al. 1999(Rhododendro schlippenbachii-Quercion mongolicae, Aceri pseudosieboldiani-Quercetalia mongolicae, Quercetea mongolicae). The research expatiated on the relationship between species composition of the forest communities and the environmental conditions, such as human interference, altitude, slope, topography and chemical properties of soil, and also analyzed the life form by each community. As a result, the Ainsliaeo-Quercetum mongolicae was judged as the most stable community among the forest communities identified here. On the other hand, a division of cluster analysis based on the dominance of the component species, appeared similar to the community units classified phytosociologically. Thus, it is inferred that the survey area will be dominated by the potential natural vegetation, Ainsliaeo-Quercetum mongolicae finally, if progressive succession is advanced continuously.

Methods for Improving the Function of Habitat and Eco-friendly Use In Urban Area Mountain Parks - Ogeum Neighborhood Park, Seoul - (도섬 산지형공원의 생물서식 기능 및 친자연적 이용을 위한 개선방안 연구 - 서울시 송파구 오금공원을 사례로 -)

  • Hur, Ji-Yeon;Lee, Kyong-Jae;Han, Bong-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.83-97
    • /
    • 2011
  • In this study, space allocation with an assessment system for improving the function of the ecological use and function of each space was undertaken to suggest appropriate goals and directions. Ogeum Park, used as the study site, is a stronghold green zone located in the fan-shaped area of the Songpa-gu green zone on a 22ha area site. The assessment system for this study consisted of a total of 3 steps: Step 1 includes the division of the spatial block, Step 2 assesses the proper functioning of each spatial block, while Step 3 includes space allocation and presents improvements for function by space. This study performed a basin analysis with the consideration that Ogeum Park is a forest area and divided the site into a total of 8 areas according to how the sections of land are used. The function of wildlife habitat included an analysis of plant ecology(vegetation type, vegetation layer, potential vegetation), animal ecology(wild birds), and waterways. The function of leisure and use included an analysis of gradients, noise, paths, status of use, and status of facilities. The evaluation of the function of habitat sorted items into native vegetation, vegetation diversification, vegetation potential, animal diversification and potential of animal habitats. The results of grading the evaluation scores by space in the function of habitat showed that the Areas IV and VII, which were 90% of the maximum point, were Grade A, Areas II and V were Grade B at 70% and Area I and VI were Grade C at 50%. Areas III and VIII, which were not found to be beyond the standard of 50%, were excluded. The evaluation of the functions of leisure and use classified items into use potential, use preference, use concentration, use diversification and use convenience. The results of the graded evaluation scores by space in use function, showed areas V and VI as Grade A, or 90% of the maximum score. Grade B, 70% of the maximum score, was given to Areas I and VII. Grade C, 50% of the maximum score, included Areas II, IV and VIII. Area III, graded lower the standard of 50%, was excluded. The study evaluated areas according to a common standard, classified spaces by proper functions into ecological spaces, environmentally-friendly use spaces and use spaces according to the standard of spatial distribution on the basis of the above results through a synthesis of grades of habitat function, leisure function and use. This offers ideas for the improvement of wildlife habitat and environment-friendly use functions by space.

Community Distribution on Mountain Forest Vegetation of the Noinbong Area in the Odaesan National Park, Korea (오대산 국립공원 노인봉 일대 삼림식생의 군락분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Kang, Eun-Ok;Choi, Young-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.103-115
    • /
    • 2014
  • Forest vegetation of Noinbong (1,338 m) in Odaesan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, subalpine coniferous forest, subalpine deciduous forest, shrub forest, riparian forest, afforestation and other vegetation. Including 196 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 203 communities were researched; mountain forest vegetation classified by physiognomy classification are 62 communities deciduous broad-leaved forest, 85 communities of mountain valley forest, 18 communities of coniferous forests, 3 communities of subalpine coniferous forests, 4 communities of subapine deciduous forests, 2 communities of shrub forests, 1 communities of riparian forests, 21 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 54.856 percent of deciduous broad-leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 15.482 percent of mountain valley forest, Pinus densiflora community holds 78.091 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Tilia amurensis, Fraxinus mandshurica, Cornus controversa, Quercus serrata, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation region in Odaesan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.

Agricultural Drought Assessment Based on Evaporative Stress Index (ESI) Calculation using MODIS Satellite Image and ROC Analysis (MODIS 위성영상 기반 ESI 산정 및 ROC 분석을 활용한 농업가뭄평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Park, Jong-Hwan;Kim, Dae-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.156-156
    • /
    • 2020
  • 가뭄은 다른 자연재해에 비해 진행 속도가 느리고 발생 시작 시기가 명확하지 않다. 또한 피해지역이 광범위하다는 점에서 사회, 경제적 피해와 농업 생산 시스템 및 수확량 등 농업 전반에 걸쳐 직접적인 영향을 미치고 있다. 전지구적 기후변화로 인해 국내의 가뭄 발생빈도는 2000년 이후 증가하고 있으며, 가뭄의 정량적 분석은 선제적 가뭄 대응을 위해 필요하다. 현재 국내에서는 여러 유관기관에서 지상 관측 데이터를 활용하여 가뭄을 모니터링하고, 가뭄 공간 분포 지도를 제공하고 있다. 하지만 지상 관측 데이터를 통한 가뭄 분포 지도는 미계측 지역에 대한 데이터 취득이 어렵고, 지형학적 특성을 고려하지 못하는 한계점이 있다. 이러한 한계점을 보완하기 위해 수자원 및 재해 분야에서 위성영상이 활용되고 있다. 위성영상을 활용한 가뭄 판단 및 예측에는 정규식생지수 (Normalized Difference Vegetation Index, NDVI)가 사용되고 있으며, 식생지수는 가뭄 발생, 진행 등에 있어 즉각적인 반응이 어렵다는 단점이 있다. 본 연구에서는 잠재 증발산과 실제 증발산의 비를 이용해 산정된 위성영상 기반 가뭄 지수인 Evaporative Stress Index (ESI)를 활용하였다. NASA (National Aeronautics and Space Administration)에서 제공하는 ESI는 전지구를 대상으로 5km 해상도로 제공하고 있다. 하지만 국내 가뭄 판단을 위해서는 높은 해상도의 영상이 필요하며, 본 연구에서는 MODIS (Moderate Resolution Imaging Spectroradiometer) 영상을 활용한 ESI의 산정을 통해 해상도의 문제를 개선하고자 한다. 산정한 500m 해상도의 ESI는 기존 5km 해상도의 ESI와 비교 검증하였으며, SPI 및 과거 가뭄 발생 현황 자료를 근거로 ROC (Receiver Operating Characteristics) 분석을 통해 시군 단위 농업가뭄평가의 적용성을 확인하고 한다.

  • PDF

Ecological Assessment Technique of Connectivity to Disconnected Floodplains by Levee (격리차단된 제내지 하천환경의 생태적 연계성 평가 기술)

  • Cho, Kang-Hyun;Jin, Seung-Nam;Cho, Hyunsuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.7-7
    • /
    • 2017
  • 범람파동 개념에 따르면 하도와 홍수터의 횡적 연결성은 하천 생태계의 생물다양성과 생산성 증대에 중요한 역할을 한다. 제방에 의하여 제내지 홍수터가 하도와 차단된 우리나라 하천에서 생태적 서비스를 증대하기 위해서 횡적 연결성을 복원하는 기술 개발이 필요하다. 횡적 연결성의 복원 기술을 개발하기 위해서는 우선 하도와 홍수터 사이에 생태적 연결성의 현황을 파악하고 연결성을 저해하는 요인을 진단하는 평가 기술 개발이 시급히 요청되고 있다. 따라서 본 연구에서는 제방에 의하여 차단된 제내지 하천환경에서 수리적, 생태적 횡적 연결성을 평가하고 진단하는 기술을 개발하고 연결성 회복 방안을 제안하고자 한다. 차단된 제내지 하천환경 평가는 1) 지리정보시스템을 이용하여 차단된 하천공간을 탐색하고, 2) 탐색된 전체 재내지에서 원격평가에 의하여 간편하게 횡적 연결성 평가를 실시하고, 3) 선정된 특정 제내지 대상지에서 현장평가에 의하여 상세하게 연결성을 평가하는 순서로 수행된다. 차단된 하천공간의 획정은 홍수가 범람할 수 있는 제내지 공간을 잠재적 하천공간으로 정의하고 수치표고모델 (DEM)과 하천기본계획의 30년 빈도 홍수위 자료를 이용하여 제내지 홍수터를 탐색하였다. 제내지 홍수터의 원격 연결성평가는 지리정보시스템에서 수치지도와 토지피복도 등 공간자료를 이용하여 수리 및 서식처 환경성, 제방 차단성과 하도 및 육상 연결성을 평가하고 원격평가 결과를 토대로 현장평가 대상지를 선정하였다. 횡적 연결성의 현장평가를 위하여 크게 하도-홍수터 연결성과 제내지 서식처 보존성으로 평가 항목을 선정하였다. 또한 연결성 평가는 수리연결성과 생물연결성으로, 서식처 보존성 평가는 습지유지율, 습지보존성, 육역지보존성을 세부항목으로 구성하였다. 평가 항목별로 5 등급의 평가 기준에 따라서 평가 점수를 부여하고 평가 총점을 산출하여 최종 연결성 평가 등급을 5 단계로 구분하였다. 현장평가를 위한 MS Access 기반 소프트웨어를 개발하여, 데이터 입력과 관리 및 평가 결과 산출과 비교를 편리하게 하였다. 개발된 제내지 하천환경 평가법을 청미천과 만경강에 적용하여 검증하였다. 개발된 평가법을 바탕으로 차단된 제내지 하천환경에서 연결성 회복에 따른 어류와 식생의 분포를 예측하는 수리생태 결합모델을 개발하였다. 먼저 차단된 제내지에서 연결 수로를 복원하여 유속, 수심 분포를 준이차 수리수문 모델로 예측하였다. 예측된 수리 환경에 따라서 지표어종의 서식처 적합도 지수 (HSI)를 이용하여 서식 분포 확률을 모의하였다. 또한 일반화가법모델 (GAM)을 이용하여 환경구배에 의한 우점식생의 분포를 예측하였다. 차단된 제내지 하천환경의 생태적 연계성 평가 기술을 기반으로 제방제거, 제방후퇴, 제방고 하강, 수문 및 연결수로 개선, 생물이동 저해 장벽 제거 등의 다양한 복원기술이 개발되어야 할 것으로 생각된다.

  • PDF

Community Distribution on Forest Vegetation of the Namdeogyusan Area in the Deogyusan National Park, Korea (덕유산 국립공원 남덕유산 일대 삼림식생의 군락분포에 관한 연구)

  • Oh, Jang-Geun;Kim, Chang-Hwan;Kang, Eun-Ok;Gin, Yu-Ri
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.440-448
    • /
    • 2013
  • Forest vegetation of Namdeogyusan (1,507 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, afforestation and other vegetation. Including 45 communities of mountain forest vegetation and 8 communities of other vegetation, the total of 53 communities were researched; mountain forest vegetation classified by physiognomy classification are 22 communities deciduous broad-leaved forest, 11 communities of valley forest, 5 communities of coniferous forests, 7 afforestation and 8 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata and Quercus variabilis communities account for 79.30 percent of deciduous broad-leaved forest, Fraxinus mandshurica community takes up 82.96 percent of mountain valley forest, Pinus densiflora community holds 53.31 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Fraxinus mandshurica, Quercus serrata, Pinus densiflora, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation region in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.

Planting Design Strategy for a Large-Scale Park Based on the Regional Ecological Characteristics - A Case of the Central Park in Gwangju, Korea - (지역의 생태적 특성을 반영한 대형공원의 식재계획 전략 - 광주광역시 중앙근린공원을 사례로 -)

  • Kim, Miyeun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.3
    • /
    • pp.11-28
    • /
    • 2021
  • Due to its size and complex characteristics, it is not often to newly create a large park within an existing urban area. Also, there has been a lack of research on the planting design methodologies for a large park. This study aims to elucidate how ecological ideas can be applied to planting practice from a designer's perspective, and eventually suggest a planting design framework in the actual case, the Central Park in the City of Gwangju. This framework consists of spatial structure of planting area in order to connect and unite the separated green patches, to adapt to the changes of existing vegetation patterns, to maintain the visual continuity of landscape, and to organize the whole open space system. The framework can be provided for the spatial planning and planting design phase in which the landscape designer flexibly uses it with the design intentions as well as with an understanding of the physical, social, and aesthetic characteristics of the site. The significance of this approach is, first that it can maintain ecological and visual consistency of the both existing and introduced landscapes as a whole in spite of its intrinsic complexity and largeness, and second that it can help efficiently respond to the unexpected changes in the landscape. In the case study, comprehensive site analysis is conducted before developing the framework. In particular, wetlands and grasslands have been identified as potential wildlife habitat which critically determines the vegetation patterns of the green area. Accordingly, the lists of plant communities are presented along with the planting scheme for their shape, layout, and relations. The model of the plant community is developed responding to the structure of surrounding natural landscape. However, it is not designed to evolve to a specific plant community, but is rather a conceptual model of ecological potentials. Therefore, the application of the model has great flexibility by using other plant communities as an alternative as long as the characteristics of the communities are appropriate to the physical conditions. Even though this research provides valuable implications for landscape planning and design in the similar circumstances, there are several limitations to be overcome in the further research. First, there needs to be more sufficient field surveys on the wildlife habitats, which would help generate a more concrete planting model. Second, a landscape management plan should be included considering the condition of existing forest, in particular the afforested landscapes. Last, there is a lack of quantitative data for the models of some plant communities.