• Title/Summary/Keyword: 잠수함 마스트

Search Result 6, Processing Time 0.021 seconds

A Study on the Improvement of Submarine Detection Based on Mast Images Using An Ensemble Model of Convolutional Neural Networks (컨볼루션 신경망의 앙상블 모델을 활용한 마스트 영상 기반 잠수함 탐지율 향상에 관한 연구)

  • Jeong, Miae;Ma, Jungmok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • Due to the increasing threats of submarines from North Korea and other countries, ROK Navy should improve the detection capability of submarines. There are two ways to detect submarines : acoustic detection and non-acoustic detection. Since the acoustic-detection way has limitations in spite of its usefulness, it should have the complementary way. The non-acoustic detection is the way to detect submarines which are operating mast sets such as periscopes and snorkels by non-acoustic sensors. So, this paper proposes a new submarine non-acoustic detection model using an ensemble of Convolutional Neural Network models in order to automate the non-acoustic detection. The proposed model is trained to classify targets as 4 classes which are submarines, flag buoys, lighted buoys, small boats. Based on the numerical study with 10,287 images, we confirm the proposed model can achieve 91.5 % test accuracy for the non-acoustic detection of submarines.

Application of Submarine Stealth for Non-acoustic Detecting (비음향 탐지억제를 위한 잠수함의 스텔스 적용)

  • Choi, Chang-Mook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.263-265
    • /
    • 2012
  • 잠수함이 가장 취약한 시기는 잠수함이 스노클이나 잠망경 운용을 위하여 잠망경 심도로 항해할 경우이며, 이때에는 비음향 탐지센서인 레이더와 광학, 사람에 의한 시각에 탐지될 확률이 매우 높다. 따라서 본 논문에서는 이러한 상황에서 탐지되는 취약성을 극복하고자 잠수함 마스트 및 잠망경 부분에 비음향 스텔스를 적용하고자 한다. 먼저 비음향 탐지센서에 대해서 조사하고, 그에 따른 스텔스 기법을 분야별 분석하여 최적화한 결과 다층형 구조로 선체표면부터 RAM layer, IR layer, Camouflage layer 구조로 각각 RAM layer는 자성재료인 페라이트계열로 3~5mm, IR layer는 Ceramic 또는 Nickel 계열로 1~2mm, Camouflage layer는 군청색 계열 페인팅을 제시하였다.

  • PDF

A Study on Improvement of Submarine Attack Periscope Operation Performance using Installing Protector on Sail (잠수함 공격잠망경 함교 보호구조물 설치를 통한 장비 운용성능 향상에 관한 연구)

  • Choi, Woo-Seok;Chang, Ho-Seong;Lee, Young-Suk;Kim, Sang-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.199-206
    • /
    • 2021
  • This paper describes the feasibility and reliability verification of installing a protective structure to protect attack periscopes. The attack periscope is the critical equipment of a submarine to enable the user to monitor surface and air activity, collect navigational data, and detect and identify targets. The attack periscope provides target information acquired through TV, IR camera, and laser range finder to the combat system. In the product improvement program, the upper part of the masts was exposed to the outside of the sail because the existing attack periscope was replaced with a new one. On the other hand, the head sensor can be damaged by floating objects, such as fishing nets, during sea navigation. Therefore, the installation of a protective structure for an attack periscope improved the equipment operation performance. The feasibility and reliability of the installation of the protective structure were verified by examining the influence of URN.

A Study on Non-acoustic Stealth Techniques of Submarine (잠수함의 비음향 스텔스 기법에 관한 연구)

  • Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1330-1334
    • /
    • 2012
  • The submarines reach their weakest point when they sail on the surface to operate snorkel and periscope. At this period, however, there lies a high possibility that the submarines are detected by non-acoustic sensors such as radars, IR signatures, and human observations. In this paper, the non-acoustic stealth was adopted on the mast and periscope of submarines so as to overcome their vulnerability of being easily detected in this given situation. First of all, the non-acoustic detection sensors were investigated and the stealth methods were analyzed. And multi-layered structures consisting of RAM layer, IR layer, and Camouflage layer were proposed on the surface of the submarine. As a results, multi-layered structure was suggested with 3~5 mm of a magnetic material such as ferrite for RAM layer, 1~2 mm of ceramic or nickel for IR layer, and sea-blue paint for Camouflage layer.

Gating System Design and Casting Simulation for the Submarine Mast Cover (잠수함 마스트 커버의 주조방안설계 및 주조해석)

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.945-952
    • /
    • 2023
  • In this study, the sand casting process was applied to design the gating system and perform casting simulation in order to domestically produce the submarine mast cover. Based on simulation results, casting experiments were conducted to produce a soundness prototype. The design concept of the mast cover's gating system was based on the design of bell casting. By arranging eight tower-type gates in a circle at 45° intervals, the flow of melt flowing into each gate was uniform and did not mix with each other, and the velocity of melt was also uniform. The mast cover made of Ni-Al-Bronze alloy has no unfilled parts. However, small porosities and flow marks occurred on the surface in several places. Yield strength and ultimate tensile strength are 279.3 MPa and 675.7 MPa, respectively, and elongation is 21.2%.

3D Printing and Structure Anlaysis of the Submarine Mast Cover (잠수함 마스트 커버의 구조해석 및 3D 프린팅)

  • Jae-Hyeog Woo;Byeong-Joon Cha;Chul-Kyu, Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.937-943
    • /
    • 2023
  • In this study, the mast cover of submarine was reverse engineered and structural analysis was performed. In order to print with the 3D printer, the modeling was reduced to 1/5 size by applying geometric similarity. From the structural analysis results, it was found that the maximum value of equivalent stress generated in the mast cover was 180.9 MPa. This stress value occurs on the inner surface in the major axis. As a result of applying the load condition at a diving depth of 600 m, the mast cover is in a completely elastic state. The 1/5 size model printed on FDM 3D printer with PLA filament was the same as the reverse engineered modeling and it was printed in a perfect shape with no apparent defects. The 1/5 size model printed on PBF 3D printer with SUS316L powder was perfectly manufactured with no apparent defects.