• Title/Summary/Keyword: 잔향

Search Result 391, Processing Time 0.031 seconds

Performance Improvement of CPSP Based TDOA Estimation Using the Preemphasis (프리엠퍼시스를 이용한 CPSP 기반의 도달시간차이 추정 성능 개선)

  • Kwon, Hong-Seok;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.461-470
    • /
    • 2009
  • We investigate and analyze the problems encountered in frame-based estimation of TDOA (Time Difference of Arrival) using CPSP function. Spectral leakage occurring in framing of a speech signal by a rectangular window could make estimation of CPSP spectrum inaccurate. Framing with other windows to reduce the spectral leakage distorts the signal due to the asynchronous weighting around the frame specifically both ends of the frame. These problems degrade the performance of the CPSP-based TDOA estimation. In this paper, we propose a method to alleviate those problems by pre-emphasis of the speech signal. It reduces the influence of the spectral leakage by reducing dynamic range of the spectrum of a speech signal with pre-emphasis. To validate the proposed method of pre-emphasis, we carry out TDOA estimation experiments in various noise and reverberation conditions, Experimental results have shown that the framing of pre-emphasized microphone output by a rectangular window achieves higher success rate of TDOA estimation than any other framing methods.

The fabrication and analysis of the SFIT type filter (SPIT형 필터 제작 및 분석)

  • You, Il-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.699-706
    • /
    • 2010
  • We have studied to obtain the slanted finger interdigital(SFIT) type filter was formed on the Langasite substrate and was evaporated two IDT electrode by Aluminum-Copper alloy respectively. We can fabricate that the block weighted type IDT as an input transducer of the filter and the withdrawal weighted type IDT as an output transducer of the filter from the results of our computer-simulation. Also, we have performed to obtain the properly design conditions about phase shift conditions of the SPIT type filter. We have employed that the number of pairs of the input and output IDT are 50 pairs and the thickness and the width of reflectors are $5000\;{\AA}$ and $3.6{\mu}m$ respectively. At the first sample, we have employed that the distance from the hot electrode to the reflectors is $2.4{\mu}m$ distance from the ground electrode to the reflectors is $1.8{\mu}m$ and the distance from the hot electrode to the ground is $1.5{\mu}m$ respectively. At the other sample, we have also employed that the distance from the hot electrode to the reflectors and the distance from the ground electrode to the reflectors are $2.4{\mu}m$. Frequency response of the fabricated SAW filter has the property that the center frequency is about 190MHz and bandwidth at the 3dB is probably 7.3 MHz. And we could obtain that return is less than -20dB, ripple characteristics is probably 3dB and triple transit echo(TTE) is less than -22dB after when we have matched impedance.

Detection of Abnormal Leakage and Its Location by Filtering of Sonic Signals at Petrochemical Plant (비정상 음향신호 필터링을 통한 플랜트 가스누출 위치 탐지기법)

  • Yoon, Young-Sam;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.655-662
    • /
    • 2012
  • Gas leakage in an oil refinery causes damage to the environment and unsafe conditions. Therefore, it is necessary to develop a technique that is able to detect the location of the leakage and to filter abnormal gas-leakage signals from normal background noise. In this study, the adaptation filter of the finite impulse response (FIR) least mean squares (LMS) algorithm and a cross-correlation function were used to develop a leakage-predicting program based on LABVIEW. Nitrogen gas at a high pressure of 120 kg/$cm^2$ and the assembled equipment were used to perform experiments in a reverberant chamber. Analysis of the data from the experiments performed with various hole sizes, pressures, distances, and frequencies indicated that the background noise occurred primarily at less than 1 kHz and that the leakage signal appeared in a high-frequency region of around 16 kHz. Measurement of the noise sources in an actual oil refinery revealed that the noise frequencies of pumps and compressors, which are two typical background noise sources in a petrochemical plant, were 2 kHz and 4.5 kHz, respectively. The fact that these two signals were separated clearly made it possible to distinguish leakage signals from background noises and, in addition, to detect the location of the leakage.

Investigation of the sound insulation performance of walls and flanking noises in classrooms using field measurements (현장실험을 통한 학교교실의 벽체 차음성능 및 측로전달소음 조사)

  • Ryu, Da-Jung;Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.329-337
    • /
    • 2017
  • In USA and UK, the standards of both reverberation time and background noise level have been established for the appropriate aural environment in classrooms. In order to realize this, guidelines for architectural planning and interior finishing have been also suggested. However, in Korea, there has hardly been any guidelines for satisfying background noise criteria and investigation about sound insulation performance of current walls of classrooms. The present study investigates the structure of outer wall and walls between classrooms of two middle schools in order to analyze the sound insulation performance against both exterior and interior noises. Acoustic parameters including transmission loss, standardized sound level difference, and signal to noise ratio have been measured and analyzed for sound insulation performance of walls and flanking noises. As a result, concerning the walls in between classrooms, it was found that walls of dry construction have greater sound insulation performance rather than the walls of wet construction especially in mid and high frequency bands. Also, It was revealed that thermopane, insulated pair glass, of outer walls, has greater sound insulation performance than the double window consisted of two single pane glass. Regarding flanking noises, the standards were exceeded when all windows, or windows and doors front onto corridor were opened. It denotes that students could be disturbed with the sound transmission by the interior noises.

A Study on the Development of Sound Absorption Material Using Perlite for Noise Barrier Wall (펄라이트를 이용한 방음벽의 흡음소재 개발에 관한 기초적 연구)

  • Jo, Young-Kug;Yang, Ju-Kyung
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.653-660
    • /
    • 2008
  • The purpose of this study is to analyze the optimal mix design of the sound absorption material that is made from perlite and various binder systems for noise barrier wall. The polymer cement slurry which is made from two types of polymer dispersions, and silicone type inorganic material are used as binder. The test specimens are prepared with various polymer cement ratios, binder ratios, and tested for strengths, freezing and thawing and sound absorption performance by the tube and the reverberation room methods. From the test results, the difference of sound absorption coefficient by the tube method is a little recognized, however, noise reduction coefficient (NRC) of test specimens bound by the polymer cement slurry is in the ranges of 0.48 to 0.51. They are a little higher than those bound by cement only, and are lower values than recommended value of 0.7 by the Ministry of Environment. However, the sound absorption coefficient of test specimens at low frequency range of 250 to 500 Hz by reverberation room method shows very high values as 0.84 to 1.00, and 0.57 to 0.77 at the high frequency. The test specimens with polymer cement slurry binder have a good balance between performance and cost, and have proper properties in strengths, freezing and thawing resistance as sound absorption material for noise barrier wall. It is apparent that the good sound absorption material can be produced according to the optimum mix design that is recommended from this study.

Prediction of the Acoustic Performance of a Music Hall Considering the Radiation Characteristics of Korean Traditional Musical Sources (국악음원의 방사특성을 고려한 국악원의 음향 성능 예측)

  • 정철호;이정권;연철호;한찬훈
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.146-161
    • /
    • 2004
  • There have been always some difficulties in target setting and conditioning of acoustic performances of the Korean traditional music hall due mainly to the lack of the information on the sound radiation characteristics of Korean musical sources. In this study, the radiation characteristics of four typical Korean traditional musical sources were investigated in precision and their usage was demonstrated: The selected musical sources were Gayageum (string), Daegeum (woodwind), Jango (drum), and Pansori Chang (vocal performance). Each sound source was located at the center of a semi-anechoic chamber and the directivity was determined by the measured sound pressure levels in every 10° angular position, for both vertical and horizontal directions. The directivity pattern of Gayageum varies from a uniform to a complex pattern having many side lobes with the increase of frequency. The main radiation of Daegeum is toward the upward direction. The directivity pattern of Jango is clearly a side-oriented one and the left direction intensity is sharper than its right side at low frequencies. For the Chang, the directivity pattern change from a uniform pattern to a frontally directed one as the frequency goes high. Measured directional and spectral characteristics of traditional Korean music sources were implemented into the computation of architectural acoustic measures for the Busan National Korean Traditional Music Hall which is under construction. Parameters such as RT, SPL, C80, IE, STI were calculated at two receiver positions by using a ray tracing technique. Significant differences in the acoustic measures at receiver positions were observed between the results in using the omni-directional source and the directional one. It is thought that the suggested source data and design method can be used as a basic reference in the future acoustic design of performance halls for the Korean traditional music.

Overview of the KIOST-HYU Joint Experiment for Acoustic Propagation in Shallow Water Geological Environment (천해 지질환경에서의 음파전달 특성 연구를 위한 KIOST-한양대 공동실험 개요)

  • Cho, Sungho;Kang, Donhyug;Lee, Cheol-Ku;Jung, Seom-Kyu;Choi, Jee Woong;Oh, Suntaek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.411-422
    • /
    • 2015
  • This paper presents an overview of the geological environment investigation and underwater acoustic measurements for the purpose of "Study on the Relationship between the Geological Environment and Acoustic Propagation in Shallow Water", which are jointly carried out by KIOST (Korea Institute of Ocean Science & Technology) and Hanyang University in the western shallow water off the Taean peninsula in the Yellow Sea in April-May 2013. The experimental site was made up of various sediment types and bedforms due to the strong tidal currents and coastal geomorphological characteristics. The geological characteristics of the study area were intensively investigated using multi-beam echo sounder, sub-bottom profiler, sparker system and grab sampler. Acoustic measurements with a wide range of research topics in a frequency range of 20~16,000 Hz: 1) low frequency sound propagation, 2) mid-frequency bottom loss, 3) spatial coherence analysis of ambient noise, and 4) mid- frequency bottom backscattering were performed using low- and mid-frequency sound sources and vertical line array. This paper summarizes the topics that motivated the experiment, methodologies of the acoustic measurements, and acoustic data analysis based on the measured geological characteristics, and describes summary results of the geological, meteorological, and oceanographic conditions found during the experiments.

Investigation of the Variation of SAR Values in Mice and Rats Depending on the Exposure Conditions in Whole-Body Exposure Environments (전신 노출 환경에서 노출 조건에 따른 마우스와 랫트의 SAR 값 변화량 분석)

  • Mun, Ji-Yeon;Seo, Min-Gyeong;Kim, Tae-Hong;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.161-167
    • /
    • 2013
  • In animal experiments for EMF exposure, it is very important to estimate the SAR values accurately in animals. In this paper, we investigated the variation of SAR values in mice and rats, depending on the number and separation distance of animals and the existence of the water-supplying bottle. The whole-body of mice or rats in a cage were exposed in the reverberation chamber at CDMA and WCDMA frequencies. Simulation results show that the variation of the whole-body averaged SAR is larger when several animals are exposed in a cage, compared to the existence of water-supplying bottle and the amount of water. It turns out that compared to single mouse or rat is located in the cage, the maximum variation of the whole-body averaged SAR values for mice at 850 MHz and 1,950 MHz are 15.3 % and 14.9 % when three mice are located in the cage, and those for rats are 18.7 % and 21.1 % for each frequency when two rats are located in the cage. It is concluded that the variation of SAR values depending on the exposure conditions in real situation cannot be ignored.

Effects of sound absorbent gypsum board in the ceiling on low-frequency heavyweight floor impact sound (흡음 석고보드 천장재에 의한 저주파 중량 바닥충격음의 저감 효과)

  • Song, Han-Sol;Ryu, Jong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.323-330
    • /
    • 2018
  • This study investigated effects of absorbent gypsum board in the ceiling on low-frequency heavyweight floor impact sound through sound absorption coefficient and floor impact sound measurement. The sound absorption coefficients were measured with sound absorbent gypsum board, glass wool on gypsum board, and a double panel absorbent gypsum board (absorbent gypsum board + glass wool + absorbent gypsum board). Result showed that the absorbent gypsum board had sound absorption coefficient of 0.1 ~ 0.7 from 200 and 630 Hz octave band. The sound absorption coefficient was increased in all frequency range by adding glass wool. Additional absorbent gypsum board increased sound absorption coefficient up to 250 Hz octave band, but decreased over 250 Hz. Heavyweight floor impact sounds were measured in test building for three materials above, gypsum board, and bare slab. Result showed that glass wool on gypsum board and a double panel absorbent gypsum board reduced by 3 dB ~ 4 dB (single number quantity) heavyweight floor impact sound. Comparing with bare slab condition, floor impact sound reduction was mainly found from 125 Hz to 500 Hz octave band, and the maximum reduction was shown in the 250 Hz octave band.

Developing of Sound Absorption Composite Boards Using Carbonized Medium Density Fiberboard (탄화 중밀도섬유판을 이용한 목재흡음판 개발)

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop;Kim, Jong-In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.714-722
    • /
    • 2014
  • In the previous study, a variety of wood-based panels was thermally decomposed to manufacture carbonized boards that had been proved to be high abilities of insect and fungi repellence, corrosion and fire resistant, electronic shielding, and formaldehyde adsorption as well as sound absorption performance. Based on the previous study, carbonized medium density fiberboard (c-MDF) was chosen to improve sound absorption performance by holing and sanding process. Three different types of holes (cross shape, square shape, and line) with three different sanding thickness (1, 2, and 3 mm) were applied on c-MDF and then determined sound absorption coefficient (SAC). The control c-MDF without holes had 14% of SAC, however, those c-MDFs with holes had 16.01% (square shape), 15.68% (cross shape), and 14.25% (line) of SAC. Therefore, making holes on the c-MDF did not significantly affect on the SAC. As the degree of sanding increased, the SAC of c-MDF increased approximately 65% on sanding treated c-MDFs (21.5, 21.83, and 19.37%, respectively) compared to the control c-MDF (13%). Based on these results, composite sound absorbing panel was developed with c-MDF and MDF (11 mm). The noise reduction coefficient of composite sound absorbing panel was 0.45 which was high enough to certify as sound absorbing material.