• Title/Summary/Keyword: 잔향

Search Result 391, Processing Time 0.027 seconds

A Robust Reverberation Rejection System against the Underwater Environmental Variations (수중 환경 변화에 강인한 잔향 제거 시스템)

  • 김기만
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-70
    • /
    • 1997
  • An active sonar is used to the navigation system or military purposes. In the active sonar one of the problems is a reverberation. The reflected signals from surface, bottom, and volume are received at receiver. This reverberation is an interference in the active sonar, and for the enhanced performance must be rejected. In this paper I study the method to reject the reverberation. The proposed method use the orthogonal property between the signal subspace and noise subspace in the eigen subspace. In the proposed method the noise subspace is calculated. I have performed the computer simulations to prove the performance of the proposed method.

  • PDF

Fault Detection Method for Ceramic Cup by Pseudo Reverberation Time Based on Output Data by Impact Test (충격 시험의 출력 데이터에 기초한 유사잔향 시간을 이용한 도자기의 결함 탐지법)

  • Park Seok-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.257-268
    • /
    • 2006
  • To determine the faults of ceramic cup it is proposed to use pseudo reverberation time concept estimated by impact test in room. Schroeder curves estimated from impact test for a cup with small crack and without one are utilized to estimate pseudo reverberation time. Pseudo reverberation times are compared and discussed according to a sort of impact hammers and impact points and also boundary conditions. As a result. proposed method is proved to be very useful to detect the existence of faults for candidate cups.

Bistatic reverberation simulation using intersection of scattering cross section between sound source and receiver (음원과 수신기 사이에 교차 산란단면적을 이용한 양상태 잔향음 모의)

  • Oh, Raegeun;Kim, Sunhyo;Son, Su-Uk;Choi, Jee Woong;Park, Joung-Soo;Shin, Changhong;Ahn, Myonghwan;Lee, Bum Jik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.12-22
    • /
    • 2017
  • It is important to predict accurately reverberation level, which is a limiting factor in underwater target detection. Recently, the studies have been expanded from monostatic sonar to bistatic sonar in which source and receivers are separated. To simulate the bistatic reverberation level, the computation processes for propagation, scattering strength, and scattering cross section are different from those in monostatic case and more complex computation processes are required. Although there have been many researches for bistatic reverberation, few studies have assessed the bistatic scattering cross section which is a key factor in simulate reverberation level. In this paper, a new method to estimate the bistatic scattering cross section is suggested, which uses the area of intersection between two circles. Finally, the reverberation levels simulated with the scattering cross section estimated using the method suggested in this paper are compared with those estimated using the methods previously suggested and those measured from an acoustic measurements conducted in May 2013.

Ocean bottom reverberation and its statistical characteristics in the East Sea (동해 해역에서 해저면 잔향음 및 통계적 특징)

  • Jung, Young-Cheol;Lee, Keun-Hwa;Seong, Woojae;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.82-95
    • /
    • 2019
  • In this study, we analyzed the beam time series of ocean reverberation which was conducted in the eastsouthern region of East Sea, Korea during the August, 2015. The reverberation data was gathered by moving research vessel towing LFM (Linear Frequency Modulation) source and triplet receiver array. After signal processing, we analyzed the variation of ocean reverberation level according to the seafloor bathymetry, source/receiver depth and sound speed profile. In addition, we used the normalized data by using cell averaging algorithm and identified the statistical characteristics of seafloor scatterer by using moment estimation method and estimated shape parameter. Also, we analyzed the coincidence of data with Rayleigh and K-distribution probability by Kolmogorov-Smirnov test. The results show that there is range dependency of reverberation according to the bathymetry and also that the time delay and the intensity level change depend on the depths of source and receiver. In addition, we observed that statistical characteristics of similar Rayleigh probability distribution in the ocean reverberation.

Experimental performance analysis on the non-negative matrix factorization-based continuous wave reverberation suppression according to hyperparameters (비음수행렬분해 기반 연속파 잔향 제거 기법의 초매개변숫값에 따른 실험적 성능 분석)

  • Yongon Lee; Seokjin Lee;Kiman Kim;Geunhwan Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.32-41
    • /
    • 2023
  • Recently, studies on reverberation suppression using Non-negative Matrix Factorization (NMF) have been actively conducted. The NMF method uses a cost function based on the Kullback-Leibler divergence for optimization. And some constraints are added such as temporal continuity, pulse length, and energy ratio between reverberation and target. The tendency of constraints are controlled by hyperparameters. Therefore, in order to effectively suppress reverberation, hyperparameters need to be optimized. However, related studies are insufficient so far. In this paper, the reverberation suppression performance according to the three hyperparameters of the NMF was analyzed by using sea experimental data. As a result of analysis, when the value of hyperparameters for time continuity and pulse length were high, the energy ratio between the reverberation and the target showed better performance at less than 0.4, but it was confirmed that there was variability depending on the ocean environment. It is expected that the analysis results in this paper will be utilized as a useful guideline for planning precise experiments for optimizing hyperparameters of NMF in the future.

Digital Filter Model for Analog Helical Coil Spring Reverberator (헬리컬 코일 스프링 잔향기의 디지털 필터 모델)

  • Park Joon;Chon Sang-Bae;Lee Jong-Hoon;Sung Koeng-Mo;Song Sang-Seob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.291-297
    • /
    • 2006
  • This paper proposes a new Digital Reverberator that models Analog Helical Coil Spring Reverberator for guitar amplifiers. While the conventional digital reverberators are proposed to provide better sound field mainly based on room acoustics, no algorithm or analysis of digital reverberators those model Helical Coil Spring Reverberator was proposed. Considering the fact that approximately $70{\sim}80$ percent of guitar amplifiers are still with Helical Coil Spring Reverberator, research was performed based not on Room Acoustics but on Helical Coil Spring Reverberator itself as an effector. After performing simulations with proposed algorithm, it was confirmed that the Digital Reverberator by proposed algorithm provides perceptually equivalent response to the conventional Analog Helical Coil Spring Reverberators.

A study on the active sonar reverberation suppression method based on non-negative matrix factorization with beta-divergence function (베타-발산 함수를 활용한 비음수 행렬 분해 기반의 능동 소나 잔향 제거 기법에 대한 연구)

  • Seokjin Lee;Geunhwan Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.369-382
    • /
    • 2024
  • To suppress the reverberation in the active sonar system, the non-negative matrix factorization-based reverberation suppression methods have been researched recently. An estimation loss function, which makes the multiplication of basis matrices same as the input signals, has to be considered to design the non-negative matrix factorization methods, but the conventional method simply chooses the Kullback-Leibler divergence asthe lossfunction without any considerations. In this paper, we examined that the Kullback-Leibler divergence is the best lossfunction or there isthe other loss function enhancing the performance. First, we derived a modified reverberation suppression algorithm using the generalized beta-divergence function, which includes the Kullback-Leibler divergence. Then, we performed Monte-Carlo simulations using synthesized reverberation for the modified reverberation suppression method. The results showed that the Kullback-Leibler divergence function (β = 1) has good performances in the high signal-to-reverberation environments, but the intermediate function (β = 1.25) between Kullback-Leibler divergence and Euclidean distance has better performance in the low signal-to-reverberation environments.

The accuracy of analyzing reverberation time (잔향 시간 분석의 정확도)

  • Kang, Seong-Hoon;Jung, Han-Kyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.349-355
    • /
    • 2018
  • A large number of parameters have been defined in order to describe and to evaluate the acoustical propeTies in rooms. Reverberation time is an impoTant characteristic of conceT halls, theaters and studios, etc. Over the years, a number of different methods for measuring the reverberation time have been developed, the most common being: the interrupted noise method, the integrated impulse response method, and the method of recording the room response to an impulsive source. However, the reverberation time can be changed by the measurement method, sound source and microphone. Therefore, it is difficult to accurately measure the reverberation time in a room. In this paper, it will be analyzed the interpretation method of the reverberation time and discussed the limitations.

Reverberation Characterization and Suppression by Means of Low Rank Approximation (낮은 계수 근사법을 이용한 표준 잔향음 신호 획득 및 제거 기법)

  • 윤관섭;최지웅;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.494-502
    • /
    • 2002
  • In this paper, the Low Rank Approximation (LRA) method to suppress the interference of signals from temporal fluctuations is applied. The reverberation signals and temporally fluctuating signals are separated from the measured data using the Ink. The Singular value decomposition (SVD) method is applied to extract the low rank and the temporally stable reverberation was extracted using the LRA. The reverberation suppression is performed on the LRA residual value obtained by removing the approximate reverberation signals. In overall, the method can be applied to the suppression of reververation in active sonar system as well as to the modeling of reverberation.

Whitening Method for Performance Improvement of the Matched Filter in the Non-White Noise Environment (비백색 잡음 환경에서 정합필터 성능개선을 위한 백색화 기법)

  • Kim Jeong-Goo
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.111-114
    • /
    • 2006
  • 비백색잡음(non-white noise)인 잔향(reverberation)이 신호탐지(signal detection)의 주 방해신호인 천해 능동소나(active sonar) 환경에서의 표적탐지는 선백색화기(pre-whitening filter)를 사용하여 수신신호를 백색화한 후 백색잡음에서 최적 탐지기(optimum detector)인 정합필터를 사용한다. 그러나 이 방법은 잔향이 비정상(non-stationary) 특성을 가지기 때문에 구현이 매우 힘들다. 기존의 연구에 따르면 이러한 잔향은 지역적 정상상태(local stationary)라고 가정할 수 있다. 본 논문에서는 먼저 잔향신호의 지역적 정상상태의 범위를 추정(estimation)하고, 이 추정을 바탕으로 천해와 같은 비백색 잔향신호 환경에서 선백색화 블럭 정규화 정합필터(pre-whitening block normalized matched filter)의 성능을 개선할 수 있는 선백색화 기법을 제안하였다. 제안된 잔향신호의 백색화 기법은 표적신호 전 후의 잔향신호를 사용하여 처리블록(processing block)을 백색화하기 때문에 기존의 백색화 기법보다 우수한 성능을 보였다. 제안된 백색화 기법을 이용한 탐지기의 성능을 평가하기 위해 우리나라 인근해역에서 실측된 데이터를 이용하여 컴퓨터 모의실험을 수행하였다. 모의실험 결과 제안된 기법을 사용한 탐지기는 기존의 백색화 기법을 사용한 탐지기보다 우수한 탐지성능을 보였다.

  • PDF