• 제목/요약/키워드: 잔차 블록

검색결과 31건 처리시간 0.014초

α-특징 지도 스케일링을 이용한 원시파형 화자 인증 (α-feature map scaling for raw waveform speaker verification)

  • 정지원;심혜진;김주호;유하진
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.441-446
    • /
    • 2020
  • 본 논문은 심층 신경망을 이용한 화자 인증(Speaker Verification, SV) 시스템에서, 심층 신경망 내부에 존재하는 각 특징 지도(Feature Map)들의 분별력을 강화하기 위해 기존 특징 지도 스케일링(Feature Map Scaling, FMS) 기법을 확장한 α-FMS 기법을 제안한다. 기존의 FMS 기법은 특징 지도로부터 스케일 벡터를 구한 뒤, 이를 특징 지도에 더하거나 곱하거나 혹은 두 방식을 차례로 적용한다. 하지만 FMS 기법은 동일한 스케일 벡터를 덧셈과 곱셈 연산에 중복으로 사용할 뿐만 아니라, 스케일 벡터 자체도 sigmoid 비선형 활성 함수를 이용하여 계산되기 때문에 덧셈을 수행할 경우 그 값의 범위가 제한된다는 한계가 존재한다. 본 연구에서는 이러한 한계점을 극복하기 위해 별도의 α라는 학습 파라미터를 특징 지도에 원소 단위로 더한 뒤, 스케일 벡터를 곱하는 방식으로 α-FMS 기법을 설계하였다. 이 때, 제안한 α-FMS 기법은 스칼라 α를 학습하여 특징 지도의 모든 필터에 동일 값을 적용하는 방식과 벡터 α를 학습하여 특징 지도의 각 필터에 서로 다른 값을 적용하는 방식을 각각 적용 후 그 성능을 비교하였다. 두 방식의 α-FMS 모두 심층 심경망 내부의 잔차 연결이 적용된 각 블록 뒤에 적용하였다. 제안한 기법들의 유효성을 검증하기 위해 RawNet2 학습세트를 이용하여 학습시킨 뒤, VoxCeleb1 평가세트를 이용하여 성능을 평가한 결과, 각각 동일 오류율 2.47 %, 2.31 %를 확인하였다.