• Title/Summary/Keyword: 잔존부착강도

Search Result 5, Processing Time 0.021 seconds

Simplified Evaluation Method for Residual Bond Strength of Reinforced Concrete Using Standard Fire Curve (표준화재곡선을 이용한 잔존부착강도 평가 간략방법 제안)

  • Moon, Do-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.41-47
    • /
    • 2010
  • For the enhancement of structural safety of thermally damaged reinforced concrete structure, rapid evaluation of damage in the structure is very important. This study addresses a simplified method which is equivalent to the standard fire curve (ISO 834) for the residual bond strength evaluation. In the proposed method, a exposure duration as well as the maximum temperature can be considered. For the comparisons with conventional methods, concrete properties obtained from the report of Daegu subway fire accident were referred and the results support the applicability of the proposed method in this study.

Combined Effect of Fireproofing Gypsum Board on Residual Strength and Fire Resistance of Fiber Addition High Strength Concrete-Model Column (방화석고보드 부착이 섬유혼입 고강도 콘크리트 모의 기둥부재의 내화특성 및 잔존내력에 미치는 영향)

  • Yang, Seong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.442-450
    • /
    • 2012
  • In this study, fire resistance and residual strength were examined after the addition of PF fiber and bonding fireproofing gypsum board to a high strength concrete-model column of 50 MPa grade. At the beginning of the experiment, all the properties of base concrete appeared to satisfy the target range. In terms of the internal temperature record, a trend of slightly high temperature was shown when the fireproofing gypsum board was not bonding, and when the fireproofing gypsum board was bonding, as PF content increased gradually, the temperature was gradually lowered. In terms of the relationship, as time elapsed a low temperature was shown when fiber was mixed, and when the board was bonding, the trend of lower temperature could be confirmed. Meanwhile, in terms of spalling property, a severe explosive fracture was generated at PF 0%, and falling off was prevented as the fiber content was increased; however, discoloration and a multitude of cracks were discovered, and when the board was bonding, the trend in which the exterior became satisfactory when the content was increased emerged. In terms of the residual compressive strength, measuring of strength could not be performed at PF 0% without bonding of board, and the strength was increased as the fiber content was increased; however, there was a decrease in strength of about 30 ~ 40%, and in the case of PF 0% with the bonding of board, the strength could be measured; however, about an 80% decrease in strength was shown, and only about a 10 ~ 20% decline in strength was displayed, as the range of decrease was reduced as the fiber content was increased. Considering all of these factors, it was determined that a more efficient enhancement of fire resistance was obtained when two methods are applied in combination rather than when the PF fiber content and bonding of fireproofing gypsum board are utilized individually.

An Experimental Study on the Behavior of RC Beams Externally Bonded with FRPs Under Sustained Loads (지속하중을 받은 FRP 외부부착 보강 철근콘크리트 보의 거동 특성에 관한 실험적 연구)

  • Shim, Jae-Joong;Oh, Kwang-Jin;Kim, Yeon-Tae;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • In the recent construction industry, an external strengthening method using fiber reinforced polymers has been widely used. Since reinforced concrete structures strengthened with fiber reinforced polymers are always under sustained loads, influence of creep and shrinkage on the structures is inevitable. Due to the creep and shrinkage, behaviors of the structures, such as deflection, deformation, recovery capability, strength and so on are also under the influence of creep and shrinkage. Thus, in order to estimate efficacy, creep recovery and residual strength of FRP strengthened RC beams, long-term flexural experiments and static flexural experiments were carried out. As the result of the experiments, FRP strengthened RC beams were very effective in terms of deflection control. Furthermore, the strengthened beams had higher immediate deformation recovery than immediate deformation. Through the static flexural experiments, it was shown that the CFRP strengthened beam had high residual strength. It seems that the sustained loads did not affect bond and residual strength of the beams.

EFFECT OF TEMPORARY CEMENT ON TENSILE BOND STRENGTH OF DENTIN BONDING AGENT (Temporary Cement가 상아질 접착제의 접착성능에 미치는 영향)

  • Chang, Heon-Soo;Cho, Kyeu-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.685-698
    • /
    • 1995
  • This study was conducted to the effect of temporary cement on the adhesiveness of dentin bonding agent to dentin surface. One hundred freshly extracted bovine mandibular incisors were grinded to expose flat labial dentin surface. The dentin surfaces were temporarized with either eugenol-containing temporary cement(TemBond and Zinc Oxide Eugenol cement) or non-eugenol temporary cement(Nogenol and TempBond NE) for 7days, and then the temporarization was removed with surgical currette and the exposed dentin surfaces were water-rinsed. Bonding specimens were made by use of All-Bond 2 and Super-Bond C&B dentin bonding agent, and stored in $37^{\circ}C$ distilled water for 24hours. The tensile bond strenth and the cohesive failure rate were measured, and then the pretreated dentin surfaces which the temporary cement had been applied to and removed from and the fractured dentin surfaces after bonding test were examined under scanning electron microscope. The results were as follows : In case of bonding with All-Bond 2, tensile bond strength of each experimental group was lower than that of the control group(p<0.05), but there was no significant difference between the bond strengths of the control group and each experimental group in case of bonding with Super-Bond C&B(p>0.05). No significant difference between tensile bond strength of experimental group, whether temporary cement contains eugenol or not, was seen(p>0.05). In case of bonding with All-Bond 2, the control group showed cohesive-adhesive mixed failure mode and the experimental groups mainly showed adhesive failure mode, but in case of bonding with Super-Bond C&B, almost of the control and the experimental groups mainly showed cohesive failure mode. On SEM examination, all of the dentin specimens pretreated with either 10 % phosphoric acid or 10% citric acid after application of the temporary cements demonstrated remnants of temporary cement attached to dentin surface.

  • PDF

A Study of Cleaning Technology for Zirconium Scrap Recycling in the Nuclear Industry (원자력산업에서 지르코늄 스크랩 재활용을 위한 세정기술에 관한 연구)

  • Lee, Ji-Eun;Cho, Nam-Chan;An, Chang-Mo;Noh, Jae-Soo;Moon, Jong-Han
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.264-271
    • /
    • 2013
  • In this study, we optimized the removal condition of contaminants attached on the scrap surface to recycle the scrap generated from the Zr alloy tube manufacturing process back to the nuclear grade. The main contaminant is remnant of watersoluble cooling lubricant that is used in the pilgering manufacture during the tube production, and it is assumed to be compressed and carbonized on the surface of tube. Zirlo alloy tube of ${\phi}9.50mm$, which has high occurrence frequency of scrap, was selected as the object to be cleaned, and cleaning abilities of reagents were evaluated by measuring the characteristics of contaminants remained and by analyzing the surface of the tube after cleaning process. For evaluation of each cleaning agent, we selected two types of sodium hydroxide series and three types of potassium hydroxide series. Furthermore, to confirm dependence on tempe-rature and ultrasonic intensities, cleaning at the room temperature, $40^{\circ}C$, and $60^{\circ}C$ was conducted, and results showed that higher the cleaning temperature and higher the ultrasonic intensity, better the cleaning effect. As a result of the bare-eye inspection, while the use of sodium hydroxide provided satisfactory condition on the tube surface, the use of potassium hydroxide series provided satisfactory condition on the tube surface only when the ultrasonic intensity was over 120 W. In the cleaning effect analysis using the gravimetric method, cleaning efficiency of sodium hydroxide series was as high as 97.6% ($60^{\circ}C$, 120 W), but since the tube surface condition was poor after the use of potassium hydroxide, the gravimetric method was not appropriate. In the analytical result of surface contaminants on the tube surface, C, O, Ca, and Zr were detected, and mainly C and O dominated the proportion of contaminants. It was also found that the degree of cleaning on the tube affected the componential ratio of C and O; if the degree of cleaning is high, or if cleaning is well-conducted, the proportion of C is decreased, and the proportion of O is increased. Based on these results, optimal cleaning for application in the industry can be expected by categorizing cleaning process into three steps of Alkali cleaning, Rinsing, and Drying and by adjusting cleaning parameters in each step.