• Title/Summary/Keyword: 잔류 슬립

Search Result 14, Processing Time 0.02 seconds

The Study on PRAT Performance due to Tire Pattern Shapes using Steady State Rolling Analysis Method (정상 상태 롤링 해석 기법 적용을 통한 타이어 패턴 형상에 따른 PRAT 특성 연구)

  • Sung, Ki-Deug;Park, Hyun-Man;Koo, Byong-Kook;Cho, Choon-Tack
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • It is generally known that the PRAT(Plysteer Residual Aligning Torque) is one of indicating a performance factors of a tire for assessing the vehicle pull, also tire pattern shape, which means lateral groove angle, is very important tire design factor in relation to the PRAT. Lateral grooves of tire pattern are widely divided into center and shoulder parts. So, this paper has studied the correlation between the PRAT and their lateral groove angles using FEM. Especially, the steady state rolling analysis among tire rolling analysis methods has been used for the PRAT performance study. Firstly, analysis result data have been compared with the experimental data to validate FE analysis for PRAT. Next, the PRAT due to the lateral groove angle about PCR(Passenger Car Radial) tire and SUV tire has been analyzed. The tendency of the PRAT due to the lateral groove angles can be used as a guide line for the tire design in relation to vehicle pull.

Crack Formation and Propagation Behavior of $Al_2$$O_3$/$ZrO_2$Laminate Composites ($Al_2$$O_3$/$ZrO_2$적층복합체의 균열생성 및 전파거동)

  • 방희곤;박상엽
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1058-1064
    • /
    • 2000
  • 연속슬립캐스팅 및 상압소결법으로 $Al_2$O$_3$/ZrO$_2$적층복합체를 제조하였으며, 적층복합체에서 ZrO$_2$층을 단사정, 정방정 및 입방정으로 각각 달리 적층하여 균열생성 및 전파 거동에 미치는 ZrO$_2$상의 영향을 고찰하였다. 균열 생성은 냉각시 $Al_2$O$_3$층과 ZrO$_2$층 간의 열팽창 계수의 차이에 의한 열적불일치응력이 가장 큰 요인으로 작용하였다. 적층체 내에 존재하는 균열은 tetra-ZrO$_2$의 경우 적층두께 조절로 가능하였으며, cubic-ZrO$_2$의 경우는 냉각속도 조절로 균열밀도로 크게 낮출 수 있었다. $Al_2$O$_3$/ZrO$_2$적층체를 구성하는 세가지 ZrO$_2$상(mono, tetra, cubic)들 중에서 cubic-ZrO$_2$가 포함된 적층체의 경우 $Al_2$O$_3$와 ZrO$_2$계면에 형성된 잔류압축응력으로 인한 균열굴절 효과를 얻을 수 있었다.

  • PDF

Mechanical Characteristics of Cementing Plane in Concrete Repair under Various Cementing Conditions (접합조건에 따른 콘크리트 접합부의 역학적 특성)

  • 김재동;정요훈
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.362-372
    • /
    • 2003
  • Since the occurrence of Portland cement, a great number of concrete structures were constructed. But the concrete structures have their own life times, which inevitably demand repairing treatments, especially on their surface parts. Currently many various methods have been developed and are being applied fer this purpose. In this study, a newly developed method using pneumatic chipping machine and anchor pin was adopted far repair of old concrete structure and the mechanical characteristics of cementing plane between existing and new concrete were tested. Comparing the removal methods for the decrepit part of existing concrete using pneumatic chipping machine and hydraulic breaker, the peak cohesion was higher when using chipping machine at the cementing plane. On the other hand, the residual cohesion was higher for the case of breaker. Step shaped chipping on the cementing plane was effective in increasing peak cohesion, which results 14% increase in the case of 30 mm step height and 22% in 50 mm height when compared with planar chipping plane. The use of anchor pin increased the residual cohesion, which restricted shear slip on the cementing plane after peak shear stress and the tensile strength of 32% compared with that of non-anchored case. According to the combined effect of step shaped chipping of 30 mm and anchor pin with an interval of 15 cm, the peak cohesion reached up to 77% and the residual cohesion showed 180% of the ones of the fresh concrete, respectively.

Optimum Design and Structural Application of the Bracing Damper System by Utilizing Friction Energy Dissipation and Self-Centering Capability (마찰 에너지 소산과 자동 복원력을 활용한 가새 댐퍼 시스템의 최적 설계와 구조적 활용)

  • Hu, Jong Wan;Park, Ji-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.377-387
    • /
    • 2014
  • This study mainly treats a new type of the bracing friction damper system, which is able to minimize structural damage under earthquake loads. The slotted bolt holes are placed on the shear faying surfaces with an intention to dissipate considerable amount of friction energy. The superelastic shape memory alloy (SMA) wire strands are installed crossly between two plates for the purpose of enhancing recentering force that are able to reduce permanent deformation occurring at the friction damper system. The smart recentering friction damper system proposed in this study can be expected to reduce repair cost as compared to the conventional damper system because the proposed system mitigates the inter-story drift of the entire frame structure. The response mechanism of the proposed damper system is firstly investigated in this study, and then numerical analyses are performed on the component spring models calibrated to the experimental results. Based on the numerical analysis results, the seismic performance of the recentering friction damper system with respect to recentering capability and energy dissipation are investigated before suggesting optimal design methodology. Finally, nonlinear dynamic analyses are conducted by using the frame models designed with the proposed damper systems so as to verify superior performance to the existing damper systems.