• Title/Summary/Keyword: 잔량추정

Search Result 4, Processing Time 0.02 seconds

An Empirical Study on Machine Learning based Smart Device Lithium-Ion Cells Capacity Estimation (머신러닝 기반 스마트 단말기 Lithium-Ion Cell의 잔량 추정 방법의 실증적 연구)

  • Jang, SungJin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.797-802
    • /
    • 2020
  • Over the past few years, smart devices, including smartphones, have been continuously required by users based on portability. The performance is improving. Ubiquitous computing environment and sensor network are also improved. Due to various network connection technologies, mobile terminals are widely used. Smart terminals need technology to make energy monitoring more detailed for more stable operation during use. The smart terminal which is light in small size generates the power shortage problem due to the various multimedia task among the terminal operation. Various estimation hardwares have been developed to prevent such situation in advance and to operate stable terminals. However, the method and performance of estimating the remaining amount are not relatively good. In this paper, we propose a method for estimating the remaining amount of smart terminals. The Capacity Estimation of lithium ion cells for stable operation was estimated based on machine learning. Learning the characteristics of lithium ion cells in use, not the existing hardware estimation method, through a map learning algorithm using machine learning technique The optimized results are estimated and applied.

Short Selling and Predictability of Negative Sock Returns: Evidence from the Korean Stock Market (공매도거래와 주가하락 가능성에 관한 연구: 한국 주식시장의 경우)

  • Yoo, Shiyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.560-565
    • /
    • 2016
  • In this study, we empirically scrutinize the relationship between short selling transactions and stock price behaviors using the stock market data in Korea during the period from January 2005 to March 2016. We chose the short selling volume ratio (SVR), stock lending volume ratio (LVR), and stock lending open interest ratio (LIR) as variables of the short selling trading activities. We construct portfolios based on the percentile of the short selling volume ratio during the sample period; upper-10%-SVR portfolio, upper-25%-SVR portfolio, upper-50%-SVR portfolio. We estimate the monthly firm-specific return and monthly skewness of the daily firm-specific returns of each portfolio. The firm-specific return or skewness is specified as a dependent variable and the short selling activities as explanatory variables. The results show that all of the statistically significant estimates of the short selling activities for the firm-specific returns are negative and that all of the statistically significant estimates of the skewness of the short selling activities are positive. These results support the hypothesis that short selling activities cause the stock price to decrease.

Optimized Network Pruning Method for Li-ion Batteries State-of-charge Estimation on Robot Embedded System (로봇 임베디드 시스템에서 리튬이온 배터리 잔량 추정을 위한 신경망 프루닝 최적화 기법)

  • Dong Hyun Park;Hee-deok Jang;Dong Eui Chang
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.88-92
    • /
    • 2023
  • Lithium-ion batteries are actively used in various industrial sites such as field robots, drones, and electric vehicles due to their high energy efficiency, light weight, long life span, and low self-discharge rate. When using a lithium-ion battery in a field, it is important to accurately estimate the SoC (State of Charge) of batteries to prevent damage. In recent years, SoC estimation using data-based artificial neural networks has been in the spotlight, but it has been difficult to deploy in the embedded board environment at the actual site because the computation is heavy and complex. To solve this problem, neural network lightening technologies such as network pruning have recently attracted attention. When pruning a neural network, the performance varies depending on which layer and how much pruning is performed. In this paper, we introduce an optimized pruning technique by improving the existing pruning method, and perform a comparative experiment to analyze the results.

Self-driving quarantine robot with chlorine dioxide system (이산화염소 시스템을 적용한 자율주행 방역 로봇)

  • Bang, Gul-Won
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.145-150
    • /
    • 2021
  • In order to continuously perform quarantine in public places, it is not easy to secure manpower, but using self-driving-based robots can solve problems caused by manpower. Self-driving-based quarantine robots can continuously prevent the spread of harmful viruses and diseases in public institutions and hospitals without additional manpower. The location of the autonomous driving function was estimated by applying the Pinnacle filter algorithm, and the UV sterilization system and chlorine dioxide injection system were applied for quarantine. The driving time is more than 3 hours and the position error is 0.5m.Soon, the stop-avoidance function was operated at 95% and the obstacle detection distance was 1.5 m, and the automatic charge recovery was charged by moving to the charging cradle at the remaining 10% of the battery capacity. As a result of quarantine with an unmanned quarantine system, UV sterilization is 99% and chlorine dioxide is sterilized more than 95%, which can contribute to reducing enormous social costs.